import re from collections import OrderedDict from transformers import AutoModel, AutoTokenizer from .configuration_bert import JinaBertConfig import torch from .modeling_bert import BertModel def remap_state_dict(state_dict, config: JinaBertConfig): """ Map the state_dict of a Huggingface BERT model to be flash_attn compatible. """ # LayerNorm def key_mapping_ln_gamma_beta(key): key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key) key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key) return key state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items()) # Layers def key_mapping_layers(key): return re.sub(r"^encoder.layer.", "encoder.layers.", key) state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items()) # LayerNorm def key_mapping_ln(key): key = re.sub(r"^embeddings.LayerNorm.", "emb_ln.", key) key = re.sub( r"^encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)", r"encoder.layers.\1.norm1.\2", key, ) key = re.sub( r"^encoder.layers.(\d+).output.LayerNorm.(weight|bias)", r"encoder.layers.\1.norm2.\2", key, ) key = re.sub( r"^cls.predictions.transform.LayerNorm.(weight|bias)", r"cls.predictions.transform.layer_norm.\1", key, ) return key state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) # MLP def key_mapping_mlp(key): key = re.sub( r"^encoder.layers.(\d+).intermediate.dense.(weight|bias)", r"encoder.layers.\1.mlp.fc1.\2", key, ) key = re.sub( r"^encoder.layers.(\d+).output.dense.(weight|bias)", r"encoder.layers.\1.mlp.fc2.\2", key, ) return key state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) # Attention last_layer_subset = getattr(config, "last_layer_subset", False) for d in range(config.num_hidden_layers): Wq = state_dict.pop(f"encoder.layers.{d}.attention.self.query.weight") Wk = state_dict.pop(f"encoder.layers.{d}.attention.self.key.weight") Wv = state_dict.pop(f"encoder.layers.{d}.attention.self.value.weight") bq = state_dict.pop(f"encoder.layers.{d}.attention.self.query.bias") bk = state_dict.pop(f"encoder.layers.{d}.attention.self.key.bias") bv = state_dict.pop(f"encoder.layers.{d}.attention.self.value.bias") if not (last_layer_subset and d == config.num_hidden_layers - 1): state_dict[f"encoder.layers.{d}.mixer.Wqkv.weight"] = torch.cat( [Wq, Wk, Wv], dim=0 ) state_dict[f"encoder.layers.{d}.mixer.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0) else: state_dict[f"encoder.layers.{d}.mixer.Wq.weight"] = Wq state_dict[f"encoder.layers.{d}.mixer.Wkv.weight"] = torch.cat([Wk, Wv], dim=0) state_dict[f"encoder.layers.{d}.mixer.Wq.bias"] = bq state_dict[f"encoder.layers.{d}.mixer.Wkv.bias"] = torch.cat([bk, bv], dim=0) def key_mapping_attn(key): return re.sub( r"^encoder.layers.(\d+).attention.output.dense.(weight|bias)", r"encoder.layers.\1.mixer.out_proj.\2", key, ) state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) def key_mapping_decoder_bias(key): return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key) state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items()) # Word embedding pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) if pad_vocab_size_multiple > 1: word_embeddings = state_dict["embeddings.word_embeddings.weight"] state_dict["embeddings.word_embeddings.weight"] = F.pad( word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0]) ) decoder_weight = state_dict["cls.predictions.decoder.weight"] state_dict["cls.predictions.decoder.weight"] = F.pad( decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0]) ) # If the vocab was padded, we want to set the decoder bias for those padded indices to be # strongly negative (i.e. the decoder shouldn't predict those indices). # TD [2022-05-09]: I don't think it affects the MLPerf training. decoder_bias = state_dict["cls.predictions.decoder.bias"] state_dict["cls.predictions.decoder.bias"] = F.pad( decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0 ) # LayerNorm def key_mapping_layernorm(key): return re.sub(r'^encoder.layers.(\d+).mlp.layernorm.(weight|bias)', r"encoder.layers.\1.norm2.\2", key) state_dict = OrderedDict((key_mapping_layernorm(k), v) for k, v in state_dict.items()) return state_dict v2_model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-en', trust_remote_code=True) config = JinaBertConfig(vocab_size=30528, use_qk_norm=False, mlp_type='glu', hidden_act='gelu') state_dict = v2_model.state_dict() new_state_dict = remap_state_dict(state_dict, config) flash_model = BertModel(config) flash_model.load_state_dict(new_state_dict) torch.save(new_state_dict, 'converted_weights.bin') print(config.to_json_string()) """ tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-base-en') inp = tokenizer.batch_encode_plus(['Hello world', 'How is the weather today?', 'It is raining a lot in Berlin'], return_tensors='pt', padding=True).to('cuda') v2_model.eval() flash_model.eval() v2_model = v2_model.to('cuda', torch.float16) flash_model = flash_model.to('cuda', torch.float16) output_v2 = v2_model(**inp) output_flash = flash_model(**inp) x = output_v2.last_hidden_state y = output_flash.last_hidden_state print(torch.abs(x - y)) """