--- license: other base_model: "black-forest-labs/FLUX.1-dev" tags: - flux - flux-diffusers - text-to-image - diffusers - simpletuner - lora - template:sd-lora inference: true widget: - text: 'unconditional (blank prompt)' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_0_0.png - text: 'loona from helluva boss is eating a donut' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_1_0.png --- # flux-training-losercity-next-lycoris3 This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev). The main validation prompt used during training was: ``` loona from helluva boss is eating a donut ``` ## Validation settings - CFG: `3.5` - CFG Rescale: `0.0` - Steps: `15` - Sampler: `None` - Seed: `42` - Resolution: `1024` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 0 - Training steps: 2900 - Learning rate: 0.003 - Effective batch size: 1 - Micro-batch size: 1 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Prediction type: flow-matching - Rescaled betas zero SNR: False - Optimizer: adamw_schedulefree - Precision: bf16 - Quantised: Yes: fp8-quanto - Xformers: Not used - LyCORIS Config: ```json { "algo": "lokr", "multiplier": 1.0, "linear_dim": 1000000, "linear_alpha": 1, "full_matrix": true, "factor": 14, "apply_preset": { "target_module": [ "FluxTransformer2DModel" ], "module_algo_map": { "FeedForward": { "factor": 6 } } } } ``` ## Datasets ### default_dataset - Repeats: 9999 - Total number of images: 42 - Total number of aspect buckets: 1 - Resolution: 1.048576 megapixels - Cropped: True - Crop style: center - Crop aspect: square ### default_dataset_512 - Repeats: 9999 - Total number of images: 42 - Total number of aspect buckets: 1 - Resolution: 0.262144 megapixels - Cropped: True - Crop style: center - Crop aspect: square ### default_dataset_640 - Repeats: 9999 - Total number of images: 42 - Total number of aspect buckets: 1 - Resolution: 0.4096 megapixels - Cropped: True - Crop style: center - Crop aspect: square ### default_dataset_768 - Repeats: 9999 - Total number of images: 42 - Total number of aspect buckets: 1 - Resolution: 0.589824 megapixels - Cropped: True - Crop style: center - Crop aspect: square ### default_dataset_896 - Repeats: 9999 - Total number of images: 42 - Total number of aspect buckets: 1 - Resolution: 0.802816 megapixels - Cropped: True - Crop style: center - Crop aspect: square ### default_dataset_arb - Repeats: 9999 - Total number of images: 19 - Total number of aspect buckets: 12 - Resolution: 1.5 megapixels - Cropped: False - Crop style: None - Crop aspect: None ## Inference ```python import torch from diffusers import DiffusionPipeline from lycoris import create_lycoris_from_weights model_id = 'black-forest-labs/FLUX.1-dev' adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually lora_scale = 1.0 wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer) wrapper.merge_to() prompt = "loona from helluva boss is eating a donut" pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') image = pipeline( prompt=prompt, num_inference_steps=15, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=1024, height=1024, guidance_scale=3.5, ).images[0] image.save("output.png", format="PNG") ```