--- library_name: transformers license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer model-index: - name: deberta_large results: [] --- # deberta_large This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6965 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 3407 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.471 | 0.0173 | 20 | 0.2712 | | 1.4977 | 0.0346 | 40 | 0.7702 | | 0.7066 | 0.0519 | 60 | 0.4904 | | 0.6817 | 0.0692 | 80 | 1.0408 | | 0.897 | 0.0865 | 100 | 1.7531 | | 0.6793 | 0.1039 | 120 | 0.8040 | | 0.7946 | 0.1212 | 140 | 0.6972 | | 0.7391 | 0.1385 | 160 | 0.6933 | | 0.7441 | 0.1558 | 180 | 0.7431 | | 0.656 | 0.1731 | 200 | 0.8636 | | 0.5681 | 0.1904 | 220 | 0.7142 | | 0.9031 | 0.2077 | 240 | 0.7183 | | 0.5978 | 0.2250 | 260 | 0.7371 | | 0.6308 | 0.2423 | 280 | 0.7036 | | 0.6829 | 0.2596 | 300 | 0.6932 | | 0.6472 | 0.2769 | 320 | 0.7010 | | 0.6331 | 0.2942 | 340 | 0.7316 | | 0.7698 | 0.3116 | 360 | 0.6938 | | 0.6704 | 0.3289 | 380 | 0.7128 | | 0.7532 | 0.3462 | 400 | 0.6992 | | 0.703 | 0.3635 | 420 | 0.6932 | | 0.7747 | 0.3808 | 440 | 0.7437 | | 0.7063 | 0.3981 | 460 | 0.6931 | | 0.6013 | 0.4154 | 480 | 0.7127 | | 0.768 | 0.4327 | 500 | 0.6955 | | 0.682 | 0.4500 | 520 | 0.6948 | | 0.7419 | 0.4673 | 540 | 0.6976 | | 0.6928 | 0.4846 | 560 | 0.6963 | | 0.6246 | 0.5019 | 580 | 0.6995 | | 0.6742 | 0.5193 | 600 | 0.6965 | | 0.6419 | 0.5366 | 620 | 0.6947 | | 0.7268 | 0.5539 | 640 | 0.6996 | | 0.7054 | 0.5712 | 660 | 0.6938 | | 0.6931 | 0.5885 | 680 | 0.7010 | | 0.7344 | 0.6058 | 700 | 0.6975 | | 0.7151 | 0.6231 | 720 | 0.6950 | | 0.7106 | 0.6404 | 740 | 0.7027 | | 0.6829 | 0.6577 | 760 | 0.6941 | | 0.6883 | 0.6750 | 780 | 0.7005 | | 0.6268 | 0.6923 | 800 | 0.6978 | | 0.6674 | 0.7096 | 820 | 0.6979 | | 0.6704 | 0.7270 | 840 | 0.7024 | | 0.7527 | 0.7443 | 860 | 0.7010 | | 0.7239 | 0.7616 | 880 | 0.7060 | | 0.7611 | 0.7789 | 900 | 0.7033 | | 0.7522 | 0.7962 | 920 | 0.7010 | | 0.773 | 0.8135 | 940 | 0.6992 | | 0.6564 | 0.8308 | 960 | 0.6959 | | 0.7369 | 0.8481 | 980 | 0.6970 | | 0.7119 | 0.8654 | 1000 | 0.6971 | | 0.7181 | 0.8827 | 1020 | 0.6971 | | 0.7011 | 0.9000 | 1040 | 0.6975 | | 0.7414 | 0.9174 | 1060 | 0.6968 | | 0.7732 | 0.9347 | 1080 | 0.6968 | | 0.6499 | 0.9520 | 1100 | 0.6965 | | 0.6681 | 0.9693 | 1120 | 0.6965 | | 0.7831 | 0.9866 | 1140 | 0.6965 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1