adaptive_noise_scale = 0 bucket_no_upscale = true bucket_reso_steps = 64 cache_latents = true cache_latents_to_disk = true caption_dropout_every_n_epochs = 0 caption_dropout_rate = 0 caption_extension = ".txt" clip_skip = 1 dynamo_backend = "no" epoch = 1 full_bf16 = true gradient_accumulation_steps = 1 huber_c = 0.1 huber_schedule = "snr" ip_noise_gamma = 0.1 keep_tokens = 0 learning_rate = 8e-6 learning_rate_te1 = 3e-6 learning_rate_te2 = 0 logging_dir = "/workspace/roof_photos/log" loss_type = "l2" lr_scheduler = "constant" lr_scheduler_args = [] lr_scheduler_num_cycles = 1 lr_scheduler_power = 1 lr_warmup_steps = 0 max_bucket_reso = 2048 max_data_loader_n_workers = 0 max_timestep = 1000 max_token_length = 75 max_train_steps = 20000 min_bucket_reso = 256 mixed_precision = "bf16" multires_noise_discount = 0 multires_noise_iterations = 0 noise_offset = 0.0357 noise_offset_type = "Original" optimizer_args = [ "scale_parameter=False", "relative_step=False", "warmup_init=False", "weight_decay=0.01",] optimizer_type = "Adafactor" output_dir = "/workspace/roof_photos/model" output_name = "sdxl_captions" persistent_data_loader_workers = 0 pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0" prior_loss_weight = 1 resolution = "1024,1024" sample_prompts = "/workspace/roof_photos/model/sample/prompt.txt" sample_sampler = "euler_a" save_every_n_epochs = 1 save_every_n_steps = 2000 save_model_as = "safetensors" save_precision = "bf16" train_batch_size = 1 train_data_dir = "/workspace/roof_photos/img" train_text_encoder = true vae = "stabilityai/sdxl-vae" vae_batch_size = 2 wandb_run_name = "sdxl_captions"