--- license: apache-2.0 base_model: google/flan-t5-large tags: - generated_from_trainer metrics: - rouge model-index: - name: flan-t5-large-finetuned-coding_instructions_2023_08_18__12_06 results: [] --- # flan-t5-large-finetuned-coding_instructions_2023_08_18__12_06 This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6230 - Rouge1: 47.0864 - Rouge2: 31.2968 - Rougel: 45.9675 - Rougelsum: 46.0612 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 10 | 0.9891 | 18.047 | 9.6197 | 18.1466 | 18.2622 | 16.9538 | | No log | 2.0 | 20 | 0.7803 | 21.724 | 12.8839 | 21.4666 | 21.6773 | 17.7385 | | No log | 3.0 | 30 | 0.6827 | 42.1883 | 27.0064 | 41.5285 | 41.6611 | 18.9077 | | No log | 4.0 | 40 | 0.6526 | 44.8257 | 28.8931 | 43.8323 | 43.7858 | 18.9846 | | No log | 5.0 | 50 | 0.6407 | 44.6781 | 29.5477 | 43.9053 | 43.8475 | 19.0 | | No log | 6.0 | 60 | 0.6334 | 46.039 | 31.3315 | 45.3508 | 45.3701 | 19.0 | | No log | 7.0 | 70 | 0.6281 | 46.8592 | 31.2186 | 46.1283 | 46.1169 | 19.0 | | No log | 8.0 | 80 | 0.6250 | 46.5201 | 30.8844 | 45.5541 | 45.6876 | 19.0 | | No log | 9.0 | 90 | 0.6236 | 47.074 | 31.2968 | 46.1336 | 46.258 | 19.0 | | No log | 10.0 | 100 | 0.6230 | 47.0864 | 31.2968 | 45.9675 | 46.0612 | 19.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3