--- license: other library_name: peft tags: - axolotl - generated_from_trainer base_model: deepseek-ai/deepseek-coder-1.3b-instruct model-index: - name: deepseek-code-1.3b-inst-NLQ2Cypher results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: deepseek-ai/deepseek-coder-1.3b-instruct # base_model: Qwen/CodeQwen1.5-7B-Chat model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer is_mistral_derived_model: false load_in_8bit: false load_in_4bit: true strict: false lora_fan_in_fan_out: false data_seed: 49 seed: 49 datasets: - path: sample_data/alpaca_synth_cypher.jsonl type: sharegpt conversation: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./qlora-alpaca-deepseek-1.3b-inst # output_dir: ./qlora-alpaca-out # hub_model_id: jermyn/CodeQwen1.5-7B-Chat-NLQ2Cypher hub_model_id: jermyn/deepseek-code-1.3b-inst-NLQ2Cypher adapter: qlora lora_model_dir: sequence_len: 896 sample_packing: false pad_to_sequence_len: true lora_r: 16 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj # If you added new tokens to the tokenizer, you may need to save some LoRA modules because they need to know the new tokens. # For LLaMA and Mistral, you need to save `embed_tokens` and `lm_head`. It may vary for other models. # `embed_tokens` converts tokens to embeddings, and `lm_head` converts embeddings to token probabilities. # https://github.com/huggingface/peft/issues/334#issuecomment-1561727994 # lora_modules_to_save: # - embed_tokens # - lm_head wandb_project: fine-tune-axolotl wandb_entity: jermyn gradient_accumulation_steps: 1 micro_batch_size: 16 eval_batch_size: 16 num_epochs: 6 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0005 max_grad_norm: 1.0 adam_beta2: 0.95 adam_epsilon: 0.00001 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 # saves_per_epoch: 6 save_steps: 10 save_total_limit: 3 debug: weight_decay: 0.0 fsdp: fsdp_config: # special_tokens: # bos_token: "" # eos_token: "" # unk_token: "" save_safetensors: true ```

# deepseek-code-1.3b-inst-NLQ2Cypher This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 49 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8723 | 0.1429 | 1 | 1.6354 | | 1.9222 | 0.2857 | 2 | 1.6215 | | 1.6971 | 0.5714 | 4 | 1.4205 | | 1.2458 | 0.8571 | 6 | 0.9204 | | 0.6179 | 1.1429 | 8 | 0.6923 | | 0.366 | 1.4286 | 10 | 0.5647 | | 0.2752 | 1.7143 | 12 | 0.5225 | | 0.2931 | 2.0 | 14 | 0.5167 | | 0.1812 | 2.2857 | 16 | 0.4564 | | 0.1258 | 2.5714 | 18 | 0.4038 | | 0.0885 | 2.8571 | 20 | 0.3689 | | 0.0886 | 3.1429 | 22 | 0.3647 | | 0.1281 | 3.4286 | 24 | 0.3503 | | 0.0606 | 3.7143 | 26 | 0.3458 | | 0.0603 | 4.0 | 28 | 0.3635 | | 0.0479 | 4.2857 | 30 | 0.3724 | | 0.0963 | 4.5714 | 32 | 0.3827 | | 0.0725 | 4.8571 | 34 | 0.3868 | | 0.049 | 5.1429 | 36 | 0.3873 | | 0.0572 | 5.4286 | 38 | 0.3860 | | 0.061 | 5.7143 | 40 | 0.3890 | | 0.0702 | 6.0 | 42 | 0.3839 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1