metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
datasets:
- beans
metrics:
- accuracy
widget:
- src: >-
https://huggingface.co/jefercania/vit-beans-image-classification-model/blob/main/healthy.jpeg
example_title: Healthy
- src: >-
https://huggingface.co/jefercania/vit-beans-image-classification-model/blob/main/bean_rust.jpeg
example_title: Healthy
model-index:
- name: vit-beans-image-classification-model
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: beans
type: beans
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9699248120300752
vit-beans-image-classification-model
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the beans dataset. It achieves the following results on the evaluation set:
- Loss: 0.1321
- Accuracy: 0.9699
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.0532 | 3.85 | 500 | 0.1321 | 0.9699 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0