--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 model-index: - name: flower_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9706601466992665 - name: F1 type: f1 value: 0.97382606978311 --- # flower_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1638 - Accuracy: 0.9707 - F1: 0.9738 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 63 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 2.134 | 1.0 | 205 | 0.8454 | 0.8582 | 0.8377 | | 0.6349 | 2.0 | 410 | 0.7229 | 0.8252 | 0.7947 | | 0.3946 | 3.0 | 615 | 0.6453 | 0.8521 | 0.8301 | | 0.2747 | 4.0 | 820 | 0.3665 | 0.9083 | 0.8901 | | 0.1668 | 5.0 | 1025 | 0.3964 | 0.8998 | 0.8692 | | 0.0767 | 6.0 | 1230 | 0.2997 | 0.9303 | 0.9282 | | 0.0205 | 7.0 | 1435 | 0.1774 | 0.9584 | 0.9590 | | 0.0066 | 8.0 | 1640 | 0.1467 | 0.9719 | 0.9732 | | 0.0027 | 9.0 | 1845 | 0.1571 | 0.9707 | 0.9716 | | 0.0026 | 10.0 | 2050 | 0.1603 | 0.9694 | 0.9709 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2 - Datasets 2.18.0 - Tokenizers 0.15.2