--- library_name: peft license: mit language: - da - sv base_model: - AI-Sweden-Models/Llama-3-8B-instruct pipeline_tag: sentence-similarity tags: - text-embedding - embeddings - information-retrieval - beir - text-classification - language-model - text-clustering - text-semantic-similarity - text-evaluation - text-reranking - feature-extraction - sentence-similarity - Sentence Similarity datasets: - jealk/scandi-wiki-combined - jealk/wiki40b-da-clean --- ## The Tech Collective - Unsupervised Embedding model (Danish) ### Model Description Unsupervised model for sentence embeddings. - **Developed by:** Jesper Alkestrup, The Tech Collective - **Model type:** Embedding model - **Language(s) (NLP):** Danish - **Finetuned from model :** AI-Sweden-Models/Llama-3-8B-instruct - **Finetuning procedure:** LLM2Vec Trained by using the approach outlined in the paper **LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders**. LoRa Finetuning 1000 steps of MNTP on cleaned Danish Wikipedia https://huggingface.co/datasets/jealk/wiki40b-da-clean LoRa Finetuning 1000 steps of SimCSE on sentences from Scandivian Wikipedia (da, nn, nb, sv, fo, is): https://huggingface.co/datasets/jealk/scandi-wiki-combined (*Sentence subset*) Credits for code-repo used to finetune this model https://github.com/McGill-NLP/llm2vec Requires the llm2vec package to encode sentences. Credits to https://huggingface.co/McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp-supervised for the below instructions: ## Installation ```bash pip install llm2vec ``` ## Usage ```python from llm2vec import LLM2Vec import torch from transformers import AutoTokenizer, AutoModel, AutoConfig from peft import PeftModel # Loading base Llama model, along with custom code that enables bidirectional connections in decoder-only LLMs. MNTP LoRA weights are merged into the base model. tokenizer = AutoTokenizer.from_pretrained( "jealk/llm2vec-da-mntp" ) config = AutoConfig.from_pretrained( "jealk/llm2vec-da-mntp", trust_remote_code=True ) model = AutoModel.from_pretrained( "jealk/llm2vec-da-mntp", trust_remote_code=True, config=config, torch_dtype=torch.bfloat16, device_map="cuda" if torch.cuda.is_available() else "cpu", ) model = PeftModel.from_pretrained( model, "jealk/llm2vec-da-mntp", ) model = model.merge_and_unload() # This can take several minutes on cpu # Loading supervised model. This loads the trained LoRA weights on top of MNTP model. Hence the final weights are -- Base model + MNTP (LoRA) + supervised (LoRA). model = PeftModel.from_pretrained( model, "jealk/TTC-unsupervised-1" ) # Wrapper for encoding and pooling operations l2v = LLM2Vec(model, tokenizer, pooling_mode="mean", max_length=8124) # Encoding queries using instructions instruction = ( "Given a web search query, retrieve relevant passages that answer the query:" ) queries = [ [instruction, "how much protein should a female eat"], [instruction, "summit define"], ] q_reps = l2v.encode(queries) # Encoding documents. Instruction are not required for documents documents = [ "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments.", ] d_reps = l2v.encode(documents) # Compute cosine similarity q_reps_norm = torch.nn.functional.normalize(q_reps, p=2, dim=1) d_reps_norm = torch.nn.functional.normalize(d_reps, p=2, dim=1) cos_sim = torch.mm(q_reps_norm, d_reps_norm.transpose(0, 1)) print(cos_sim) """ tensor([[0.6470, 0.1619], [0.0786, 0.5844]]) """ ```