import torch from transformers import AutoTokenizer from architecture import Transformer t = Transformer() t.to("mps") tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") codes = ["def func(a, b):", "if x > 0:", "for i in range(10):"] encoding = tokenizer(codes, padding=True, truncation=True, return_tensors="pt") input_ids = encoding["input_ids"] attention_mask = encoding["attention_mask"] print("Input IDs:") print(input_ids) print("Attention Mask:") print(attention_mask) output = t(input_ids.to("mps"), padding_mask=attention_mask.to("mps")) print("Transformer output:") print(output)