# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # # Modified from diffusers==0.29.2 # # ============================================================================== import inspect from typing import Any, Callable, Dict, List, Optional, Union, Tuple import torch import torch.distributed as dist import numpy as np from dataclasses import dataclass from packaging import version from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback from diffusers.configuration_utils import FrozenDict from diffusers.image_processor import VaeImageProcessor from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin from diffusers.models import AutoencoderKL from diffusers.models.lora import adjust_lora_scale_text_encoder from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import ( USE_PEFT_BACKEND, deprecate, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers, ) from diffusers.utils.torch_utils import randn_tensor from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.utils import BaseOutput from ...constants import PRECISION_TO_TYPE from ...vae.autoencoder_kl_causal_3d import AutoencoderKLCausal3D from ...text_encoder import TextEncoder from ...modules import HYVideoDiffusionTransformer logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """""" def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): """ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 """ std_text = noise_pred_text.std( dim=list(range(1, noise_pred_text.ndim)), keepdim=True ) std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) # rescale the results from guidance (fixes overexposure) noise_pred_rescaled = noise_cfg * (std_text / std_cfg) # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images noise_cfg = ( guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg ) return noise_cfg def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, **kwargs, ): """ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. Args: scheduler (`SchedulerMixin`): The scheduler to get timesteps from. num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, `num_inference_steps` and `sigmas` must be `None`. sigmas (`List[float]`, *optional*): Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, `num_inference_steps` and `timesteps` must be `None`. Returns: `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the second element is the number of inference steps. """ if timesteps is not None and sigmas is not None: raise ValueError( "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values" ) if timesteps is not None: accepts_timesteps = "timesteps" in set( inspect.signature(scheduler.set_timesteps).parameters.keys() ) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) elif sigmas is not None: accept_sigmas = "sigmas" in set( inspect.signature(scheduler.set_timesteps).parameters.keys() ) if not accept_sigmas: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" sigmas schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps @dataclass class HunyuanVideoPipelineOutput(BaseOutput): videos: Union[torch.Tensor, np.ndarray] class HunyuanVideoPipeline(DiffusionPipeline): r""" Pipeline for text-to-video generation using HunyuanVideo. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`TextEncoder`]): Frozen text-encoder. text_encoder_2 ([`TextEncoder`]): Frozen text-encoder_2. transformer ([`HYVideoDiffusionTransformer`]): A `HYVideoDiffusionTransformer` to denoise the encoded video latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. """ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" _optional_components = ["text_encoder_2"] _exclude_from_cpu_offload = ["transformer"] _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] def __init__( self, vae: AutoencoderKL, text_encoder: TextEncoder, transformer: HYVideoDiffusionTransformer, scheduler: KarrasDiffusionSchedulers, text_encoder_2: Optional[TextEncoder] = None, progress_bar_config: Dict[str, Any] = None, args=None, ): super().__init__() # ========================================================================================== if progress_bar_config is None: progress_bar_config = {} if not hasattr(self, "_progress_bar_config"): self._progress_bar_config = {} self._progress_bar_config.update(progress_bar_config) self.args = args # ========================================================================================== if ( hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1 ): deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate( "steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False ) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if ( hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True ): deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate( "clip_sample not set", "1.0.0", deprecation_message, standard_warn=False ) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config) self.register_modules( vae=vae, text_encoder=text_encoder, transformer=transformer, scheduler=scheduler, text_encoder_2=text_encoder_2, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) def encode_prompt( self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_attention_mask: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, text_encoder: Optional[TextEncoder] = None, data_type: Optional[str] = "image", ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_videos_per_prompt (`int`): number of videos that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the video generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. attention_mask (`torch.Tensor`, *optional*): negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_attention_mask (`torch.Tensor`, *optional*): lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. text_encoder (TextEncoder, *optional*): data_type (`str`, *optional*): """ if text_encoder is None: text_encoder = self.text_encoder # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, LoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(text_encoder.model, lora_scale) else: scale_lora_layers(text_encoder.model, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, text_encoder.tokenizer) text_inputs = text_encoder.text2tokens(prompt, data_type=data_type) if clip_skip is None: prompt_outputs = text_encoder.encode( text_inputs, data_type=data_type, device=device ) prompt_embeds = prompt_outputs.hidden_state else: prompt_outputs = text_encoder.encode( text_inputs, output_hidden_states=True, data_type=data_type, device=device, ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_outputs.hidden_states_list[-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer. prompt_embeds = text_encoder.model.text_model.final_layer_norm( prompt_embeds ) attention_mask = prompt_outputs.attention_mask if attention_mask is not None: attention_mask = attention_mask.to(device) bs_embed, seq_len = attention_mask.shape attention_mask = attention_mask.repeat(1, num_videos_per_prompt) attention_mask = attention_mask.view( bs_embed * num_videos_per_prompt, seq_len ) if text_encoder is not None: prompt_embeds_dtype = text_encoder.dtype elif self.transformer is not None: prompt_embeds_dtype = self.transformer.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) if prompt_embeds.ndim == 2: bs_embed, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt) prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, -1) else: bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) prompt_embeds = prompt_embeds.view( bs_embed * num_videos_per_prompt, seq_len, -1 ) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt( uncond_tokens, text_encoder.tokenizer ) # max_length = prompt_embeds.shape[1] uncond_input = text_encoder.text2tokens(uncond_tokens, data_type=data_type) negative_prompt_outputs = text_encoder.encode( uncond_input, data_type=data_type, device=device ) negative_prompt_embeds = negative_prompt_outputs.hidden_state negative_attention_mask = negative_prompt_outputs.attention_mask if negative_attention_mask is not None: negative_attention_mask = negative_attention_mask.to(device) _, seq_len = negative_attention_mask.shape negative_attention_mask = negative_attention_mask.repeat( 1, num_videos_per_prompt ) negative_attention_mask = negative_attention_mask.view( batch_size * num_videos_per_prompt, seq_len ) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to( dtype=prompt_embeds_dtype, device=device ) if negative_prompt_embeds.ndim == 2: negative_prompt_embeds = negative_prompt_embeds.repeat( 1, num_videos_per_prompt ) negative_prompt_embeds = negative_prompt_embeds.view( batch_size * num_videos_per_prompt, -1 ) else: negative_prompt_embeds = negative_prompt_embeds.repeat( 1, num_videos_per_prompt, 1 ) negative_prompt_embeds = negative_prompt_embeds.view( batch_size * num_videos_per_prompt, seq_len, -1 ) if text_encoder is not None: if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(text_encoder.model, lora_scale) return ( prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask, ) def decode_latents(self, latents, enable_tiling=True): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents if enable_tiling: self.vae.enable_tiling() image = self.vae.decode(latents, return_dict=False)[0] else: image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 if image.ndim == 4: image = image.cpu().permute(0, 2, 3, 1).float() else: image = image.cpu().float() return image def prepare_extra_func_kwargs(self, func, kwargs): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] extra_step_kwargs = {} for k, v in kwargs.items(): accepts = k in set(inspect.signature(func).parameters.keys()) if accepts: extra_step_kwargs[k] = v return extra_step_kwargs def check_inputs( self, prompt, height, width, video_length, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, vae_ver="88-4c-sd", ): if height % 8 != 0 or width % 8 != 0: raise ValueError( f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if video_length is not None: if "884" in vae_ver: if video_length != 1 and (video_length - 1) % 4 != 0: raise ValueError( f"`video_length` has to be 1 or a multiple of 4 but is {video_length}." ) elif "888" in vae_ver: if video_length != 1 and (video_length - 1) % 8 != 0: raise ValueError( f"`video_length` has to be 1 or a multiple of 8 but is {video_length}." ) if callback_steps is not None and ( not isinstance(callback_steps, int) or callback_steps <= 0 ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and ( not isinstance(prompt, str) and not isinstance(prompt, list) ): raise ValueError( f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) def prepare_latents( self, batch_size, num_channels_latents, height, width, video_length, dtype, device, generator, latents=None, ): shape = ( batch_size, num_channels_latents, video_length, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor( shape, generator=generator, device=device, dtype=dtype ) else: latents = latents.to(device) # Check existence to make it compatible with FlowMatchEulerDiscreteScheduler if hasattr(self.scheduler, "init_noise_sigma"): # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32, ) -> torch.Tensor: """ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 Args: w (`torch.Tensor`): Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. embedding_dim (`int`, *optional*, defaults to 512): Dimension of the embeddings to generate. dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): Data type of the generated embeddings. Returns: `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. """ assert len(w.shape) == 1 w = w * 1000.0 half_dim = embedding_dim // 2 emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) emb = w.to(dtype)[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1)) assert emb.shape == (w.shape[0], embedding_dim) return emb @property def guidance_scale(self): return self._guidance_scale @property def guidance_rescale(self): return self._guidance_rescale @property def clip_skip(self): return self._clip_skip # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): # return self._guidance_scale > 1 and self.transformer.config.time_cond_proj_dim is None return self._guidance_scale > 1 @property def cross_attention_kwargs(self): return self._cross_attention_kwargs @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]], height: int, width: int, video_length: int, data_type: str = "video", num_inference_steps: int = 50, timesteps: List[int] = None, sigmas: List[float] = None, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_videos_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_attention_mask: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, clip_skip: Optional[int] = None, callback_on_step_end: Optional[ Union[ Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks, ] ] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None, vae_ver: str = "88-4c-sd", enable_tiling: bool = False, n_tokens: Optional[int] = None, embedded_guidance_scale: Optional[float] = None, **kwargs, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. height (`int`): The height in pixels of the generated image. width (`int`): The width in pixels of the generated image. video_length (`int`): The number of frames in the generated video. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_videos_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`HunyuanVideoPipelineOutput`] instead of a plain tuple. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). guidance_rescale (`float`, *optional*, defaults to 0.0): Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when using zero terminal SNR. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of each denoising step during the inference. with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~HunyuanVideoPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`HunyuanVideoPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ callback = kwargs.pop("callback", None) callback_steps = kwargs.pop("callback_steps", None) if callback is not None: deprecate( "callback", "1.0.0", "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", ) if callback_steps is not None: deprecate( "callback_steps", "1.0.0", "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", ) if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs # 0. Default height and width to unet # height = height or self.transformer.config.sample_size * self.vae_scale_factor # width = width or self.transformer.config.sample_size * self.vae_scale_factor # to deal with lora scaling and other possible forward hooks # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, video_length, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, callback_on_step_end_tensor_inputs, vae_ver=vae_ver, ) self._guidance_scale = guidance_scale self._guidance_rescale = guidance_rescale self._clip_skip = clip_skip self._cross_attention_kwargs = cross_attention_kwargs self._interrupt = False # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = torch.device(f"cuda:{dist.get_rank()}") if dist.is_initialized() else self._execution_device # 3. Encode input prompt lora_scale = ( self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None ) ( prompt_embeds, negative_prompt_embeds, prompt_mask, negative_prompt_mask, ) = self.encode_prompt( prompt, device, num_videos_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, attention_mask=attention_mask, negative_prompt_embeds=negative_prompt_embeds, negative_attention_mask=negative_attention_mask, lora_scale=lora_scale, clip_skip=self.clip_skip, data_type=data_type, ) if self.text_encoder_2 is not None: ( prompt_embeds_2, negative_prompt_embeds_2, prompt_mask_2, negative_prompt_mask_2, ) = self.encode_prompt( prompt, device, num_videos_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=None, attention_mask=None, negative_prompt_embeds=None, negative_attention_mask=None, lora_scale=lora_scale, clip_skip=self.clip_skip, text_encoder=self.text_encoder_2, data_type=data_type, ) else: prompt_embeds_2 = None negative_prompt_embeds_2 = None prompt_mask_2 = None negative_prompt_mask_2 = None # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) if prompt_mask is not None: prompt_mask = torch.cat([negative_prompt_mask, prompt_mask]) if prompt_embeds_2 is not None: prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2]) if prompt_mask_2 is not None: prompt_mask_2 = torch.cat([negative_prompt_mask_2, prompt_mask_2]) # 4. Prepare timesteps extra_set_timesteps_kwargs = self.prepare_extra_func_kwargs( self.scheduler.set_timesteps, {"n_tokens": n_tokens} ) timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas, **extra_set_timesteps_kwargs, ) if "884" in vae_ver: video_length = (video_length - 1) // 4 + 1 elif "888" in vae_ver: video_length = (video_length - 1) // 8 + 1 else: video_length = video_length # 5. Prepare latent variables num_channels_latents = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_videos_per_prompt, num_channels_latents, height, width, video_length, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_func_kwargs( self.scheduler.step, {"generator": generator, "eta": eta}, ) target_dtype = PRECISION_TO_TYPE[self.args.precision] autocast_enabled = ( target_dtype != torch.float32 ) and not self.args.disable_autocast vae_dtype = PRECISION_TO_TYPE[self.args.vae_precision] vae_autocast_enabled = ( vae_dtype != torch.float32 ) and not self.args.disable_autocast # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order self._num_timesteps = len(timesteps) # if is_progress_bar: with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue # expand the latents if we are doing classifier free guidance latent_model_input = ( torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents ) latent_model_input = self.scheduler.scale_model_input( latent_model_input, t ) t_expand = t.repeat(latent_model_input.shape[0]) guidance_expand = ( torch.tensor( [embedded_guidance_scale] * latent_model_input.shape[0], dtype=torch.float32, device=device, ).to(target_dtype) * 1000.0 if embedded_guidance_scale is not None else None ) # predict the noise residual with torch.autocast( device_type="cuda", dtype=target_dtype, enabled=autocast_enabled ): noise_pred = self.transformer( # For an input image (129, 192, 336) (1, 256, 256) latent_model_input, # [2, 16, 33, 24, 42] t_expand, # [2] text_states=prompt_embeds, # [2, 256, 4096] text_mask=prompt_mask, # [2, 256] text_states_2=prompt_embeds_2, # [2, 768] freqs_cos=freqs_cis[0], # [seqlen, head_dim] freqs_sin=freqs_cis[1], # [seqlen, head_dim] guidance=guidance_expand, return_dict=True, )[ "x" ] # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * ( noise_pred_text - noise_pred_uncond ) if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg( noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale, ) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t, latents, **extra_step_kwargs, return_dict=False )[0] if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop( "negative_prompt_embeds", negative_prompt_embeds ) # call the callback, if provided if i == len(timesteps) - 1 or ( (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 ): if progress_bar is not None: progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if not output_type == "latent": expand_temporal_dim = False if len(latents.shape) == 4: if isinstance(self.vae, AutoencoderKLCausal3D): latents = latents.unsqueeze(2) expand_temporal_dim = True elif len(latents.shape) == 5: pass else: raise ValueError( f"Only support latents with shape (b, c, h, w) or (b, c, f, h, w), but got {latents.shape}." ) if ( hasattr(self.vae.config, "shift_factor") and self.vae.config.shift_factor ): latents = ( latents / self.vae.config.scaling_factor + self.vae.config.shift_factor ) else: latents = latents / self.vae.config.scaling_factor with torch.autocast( device_type="cuda", dtype=vae_dtype, enabled=vae_autocast_enabled ): if enable_tiling: self.vae.enable_tiling() image = self.vae.decode( latents, return_dict=False, generator=generator )[0] else: image = self.vae.decode( latents, return_dict=False, generator=generator )[0] if expand_temporal_dim or image.shape[2] == 1: image = image.squeeze(2) else: image = latents image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 image = image.cpu().float() # Offload all models self.maybe_free_model_hooks() if not return_dict: return image return HunyuanVideoPipelineOutput(videos=image)