import functools import math import torch from torch import nn, einsum import torch.nn.functional as F from functools import partial from inspect import isfunction from collections import namedtuple from einops import rearrange, repeat, reduce from einops.layers.torch import Rearrange from entmax import entmax15 from torch.utils.checkpoint import checkpoint from x_transformers.autoregressive_wrapper import AutoregressiveWrapper DEFAULT_DIM_HEAD = 64 Intermediates = namedtuple('Intermediates', [ 'pre_softmax_attn', 'post_softmax_attn' ]) LayerIntermediates = namedtuple('Intermediates', [ 'hiddens', 'attn_intermediates', 'past_key_values', ]) # helpers def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d def cast_tuple(val, depth): return val if isinstance(val, tuple) else (val,) * depth class always(): def __init__(self, val): self.val = val def __call__(self, *args, **kwargs): return self.val class not_equals(): def __init__(self, val): self.val = val def __call__(self, x, *args, **kwargs): return x != self.val class equals(): def __init__(self, val): self.val = val def __call__(self, x, *args, **kwargs): return x == self.val def max_neg_value(tensor): return -torch.finfo(tensor.dtype).max def l2norm(t): return F.normalize(t, p=2, dim=-1) # init helpers def init_zero_(layer): nn.init.constant_(layer.weight, 0.) if exists(layer.bias): nn.init.constant_(layer.bias, 0.) # keyword argument helpers def pick_and_pop(keys, d): values = list(map(lambda key: d.pop(key), keys)) return dict(zip(keys, values)) def group_dict_by_key(cond, d): return_val = [dict(), dict()] for key in d.keys(): match = bool(cond(key)) ind = int(not match) return_val[ind][key] = d[key] return (*return_val,) def string_begins_with(prefix, str): return str.startswith(prefix) def group_by_key_prefix(prefix, d): return group_dict_by_key(partial(string_begins_with, prefix), d) def groupby_prefix_and_trim(prefix, d): kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) return kwargs_without_prefix, kwargs # activations class ReluSquared(nn.Module): def forward(self, x): return F.relu(x) ** 2 # positional embeddings class AbsolutePositionalEmbedding(nn.Module): def __init__(self, dim, max_seq_len): super().__init__() self.scale = dim ** -0.5 self.emb = nn.Embedding(max_seq_len, dim) def forward(self, x): n = torch.arange(x.shape[1], device=x.device) pos_emb = self.emb(n) pos_emb = rearrange(pos_emb, 'n d -> () n d') return pos_emb * self.scale class FixedPositionalEmbedding(nn.Module): def __init__(self, dim): super().__init__() inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) def forward(self, x, seq_dim=1, offset=0): t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq) emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) return rearrange(emb, 'n d -> () n d') class RelativePositionBias(nn.Module): def __init__(self, scale, causal=False, num_buckets=32, max_distance=128, heads=8): super().__init__() self.scale = scale self.causal = causal self.num_buckets = num_buckets self.max_distance = max_distance self.relative_attention_bias = nn.Embedding(num_buckets, heads) @staticmethod def _relative_position_bucket(relative_position, causal=True, num_buckets=32, max_distance=128): ret = 0 n = -relative_position if not causal: num_buckets //= 2 ret += (n < 0).long() * num_buckets n = torch.abs(n) else: n = torch.max(n, torch.zeros_like(n)) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).long() val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret def forward(self, qk_dots): i, j, device = *qk_dots.shape[-2:], qk_dots.device q_pos = torch.arange(i, dtype=torch.long, device=device) k_pos = torch.arange(j, dtype=torch.long, device=device) rel_pos = k_pos[None, :] - q_pos[:, None] rp_bucket = self._relative_position_bucket(rel_pos, causal=self.causal, num_buckets=self.num_buckets, max_distance=self.max_distance) values = self.relative_attention_bias(rp_bucket) bias = rearrange(values, 'i j h -> () h i j') return qk_dots + (bias * self.scale) class AlibiPositionalBias(nn.Module): def __init__(self, heads, **kwargs): super().__init__() self.heads = heads slopes = torch.Tensor(self._get_slopes(heads)) slopes = rearrange(slopes, 'h -> () h () ()') self.register_buffer('slopes', slopes, persistent=False) self.register_buffer('bias', None, persistent=False) @staticmethod def _get_slopes(heads): def get_slopes_power_of_2(n): start = (2 ** (-2 ** -(math.log2(n) - 3))) ratio = start return [start * ratio ** i for i in range(n)] if math.log2(heads).is_integer(): return get_slopes_power_of_2(heads) closest_power_of_2 = 2 ** math.floor(math.log2(heads)) return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][ :heads - closest_power_of_2] def forward(self, qk_dots): h, i, j, device = *qk_dots.shape[-3:], qk_dots.device if exists(self.bias) and self.bias.shape[-1] >= j: return qk_dots + self.bias[..., :j] bias = torch.arange(j, device=device) bias = rearrange(bias, 'j -> () () () j') bias = bias * self.slopes num_heads_unalibied = h - bias.shape[1] bias = F.pad(bias, (0, 0, 0, 0, 0, num_heads_unalibied)) self.register_buffer('bias', bias, persistent=False) return qk_dots + self.bias class LearnedAlibiPositionalBias(AlibiPositionalBias): def __init__(self, heads, bidirectional=False): super().__init__(heads) los_slopes = torch.log(self.slopes) self.learned_logslopes = nn.Parameter(los_slopes) self.bidirectional = bidirectional if self.bidirectional: self.learned_logslopes_future = nn.Parameter(los_slopes) def forward(self, qk_dots): h, i, j, device = *qk_dots.shape[-3:], qk_dots.device def get_slopes(param): return F.pad(param.exp(), (0, 0, 0, 0, 0, h - param.shape[1])) if exists(self.bias) and self.bias.shape[-1] >= j: bias = self.bias[..., :i, :j] else: i_arange = torch.arange(i, device=device) j_arange = torch.arange(j, device=device) bias = rearrange(j_arange, 'j -> 1 1 1 j') - rearrange(i_arange, 'i -> 1 1 i 1') self.register_buffer('bias', bias, persistent=False) if self.bidirectional: past_slopes = get_slopes(self.learned_logslopes) future_slopes = get_slopes(self.learned_logslopes_future) bias = torch.tril(bias * past_slopes) + torch.triu(bias * future_slopes) else: slopes = get_slopes(self.learned_logslopes) bias = bias * slopes return qk_dots + bias class RotaryEmbedding(nn.Module): def __init__(self, dim): super().__init__() inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) def forward(self, max_seq_len, device): t = torch.arange(max_seq_len, device=device).type_as(self.inv_freq) freqs = torch.einsum('i , j -> i j', t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1) return rearrange(emb, 'n d -> () () n d') def rotate_half(x): x = rearrange(x, '... (j d) -> ... j d', j=2) x1, x2 = x.unbind(dim=-2) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(t, freqs): seq_len = t.shape[-2] freqs = freqs[:, :, -seq_len:] return (t * freqs.cos()) + (rotate_half(t) * freqs.sin()) # norms class Scale(nn.Module): def __init__(self, value, fn): super().__init__() self.value = value self.fn = fn def forward(self, x, **kwargs): out = self.fn(x, **kwargs) scale_fn = lambda t: t * self.value if not isinstance(out, tuple): return scale_fn(out) return (scale_fn(out[0]), *out[1:]) class Rezero(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn self.g = nn.Parameter(torch.zeros(1)) def forward(self, x, **kwargs): out = self.fn(x, **kwargs) rezero_fn = lambda t: t * self.g if not isinstance(out, tuple): return rezero_fn(out) return (rezero_fn(out[0]), *out[1:]) class ScaleNorm(nn.Module): def __init__(self, dim, eps=1e-5): super().__init__() self.scale = dim ** -0.5 self.eps = eps self.g = nn.Parameter(torch.ones(1)) def forward(self, x): norm = torch.norm(x, dim=-1, keepdim=True) * self.scale return x / norm.clamp(min=self.eps) * self.g class RMSNorm(nn.Module): def __init__(self, dim, eps=1e-8): super().__init__() self.scale = dim ** -0.5 self.eps = eps self.g = nn.Parameter(torch.ones(dim)) def forward(self, x): norm = torch.norm(x, dim=-1, keepdim=True) * self.scale return x / norm.clamp(min=self.eps) * self.g class RMSScaleShiftNorm(nn.Module): def __init__(self, dim, eps=1e-8): super().__init__() self.scale = dim ** -0.5 self.eps = eps self.g = nn.Parameter(torch.ones(dim)) self.scale_shift_process = nn.Linear(dim * 2, dim * 2) def forward(self, x, norm_scale_shift_inp): norm = torch.norm(x, dim=-1, keepdim=True) * self.scale norm = x / norm.clamp(min=self.eps) * self.g ss_emb = self.scale_shift_process(norm_scale_shift_inp) scale, shift = torch.chunk(ss_emb, 2, dim=1) h = norm * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) return h # residual and residual gates class Residual(nn.Module): def __init__(self, dim, scale_residual=False): super().__init__() self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None def forward(self, x, residual): if exists(self.residual_scale): residual = residual * self.residual_scale return x + residual class GRUGating(nn.Module): def __init__(self, dim, scale_residual=False): super().__init__() self.gru = nn.GRUCell(dim, dim) self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None def forward(self, x, residual): if exists(self.residual_scale): residual = residual * self.residual_scale gated_output = self.gru( rearrange(x, 'b n d -> (b n) d'), rearrange(residual, 'b n d -> (b n) d') ) return gated_output.reshape_as(x) # token shifting def shift(t, amount, mask=None): if amount == 0: return t if exists(mask): t = t.masked_fill(~mask[..., None], 0.) return F.pad(t, (0, 0, amount, -amount), value=0.) class ShiftTokens(nn.Module): def __init__(self, shifts, fn): super().__init__() self.fn = fn self.shifts = tuple(shifts) def forward(self, x, **kwargs): mask = kwargs.get('mask', None) shifts = self.shifts segments = len(shifts) feats_per_shift = x.shape[-1] // segments splitted = x.split(feats_per_shift, dim=-1) segments_to_shift, rest = splitted[:segments], splitted[segments:] segments_to_shift = list(map(lambda args: shift(*args, mask=mask), zip(segments_to_shift, shifts))) x = torch.cat((*segments_to_shift, *rest), dim=-1) return self.fn(x, **kwargs) # feedforward class GLU(nn.Module): def __init__(self, dim_in, dim_out, activation): super().__init__() self.act = activation self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * self.act(gate) class FeedForward(nn.Module): def __init__( self, dim, dim_out=None, mult=4, glu=False, relu_squared=False, post_act_ln=False, dropout=0., zero_init_output=False ): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) activation = ReluSquared() if relu_squared else nn.GELU() project_in = nn.Sequential( nn.Linear(dim, inner_dim), activation ) if not glu else GLU(dim, inner_dim, activation) self.net = nn.Sequential( project_in, nn.LayerNorm(inner_dim) if post_act_ln else nn.Identity(), nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) # init last linear layer to 0 if zero_init_output: init_zero_(self.net[-1]) def forward(self, x): return self.net(x) # attention. class Attention(nn.Module): def __init__( self, dim, dim_head=DEFAULT_DIM_HEAD, heads=8, causal=False, talking_heads=False, head_scale=False, collab_heads=False, collab_compression=.3, sparse_topk=None, use_entmax15=False, num_mem_kv=0, dropout=0., on_attn=False, gate_values=False, zero_init_output=False, max_attend_past=None, qk_norm=False, scale_init_value=None, rel_pos_bias=False, rel_pos_num_buckets=32, rel_pos_max_distance=128, ): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads self.causal = causal self.max_attend_past = max_attend_past qk_dim = v_dim = dim_head * heads # collaborative heads self.collab_heads = collab_heads if self.collab_heads: qk_dim = int(collab_compression * qk_dim) self.collab_mixing = nn.Parameter(torch.randn(heads, qk_dim)) self.to_q = nn.Linear(dim, qk_dim, bias=False) self.to_k = nn.Linear(dim, qk_dim, bias=False) self.to_v = nn.Linear(dim, v_dim, bias=False) self.dropout = nn.Dropout(dropout) # add GLU gating for aggregated values, from alphafold2 self.to_v_gate = None if gate_values: self.to_v_gate = nn.Linear(dim, v_dim) nn.init.constant_(self.to_v_gate.weight, 0) nn.init.constant_(self.to_v_gate.bias, 1) # cosine sim attention self.qk_norm = qk_norm if qk_norm: scale_init_value = default(scale_init_value, -3) # if not provided, initialize as though it were sequence length of 1024 self.scale = nn.Parameter(torch.ones(1, heads, 1, 1) * scale_init_value) # talking heads self.talking_heads = talking_heads if talking_heads: self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads)) self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads)) # head scaling self.head_scale = head_scale if head_scale: self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1)) # explicit topk sparse attention self.sparse_topk = sparse_topk # entmax self.attn_fn = entmax15 if use_entmax15 else F.softmax # add memory key / values self.num_mem_kv = num_mem_kv if num_mem_kv > 0: self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) # attention on attention self.attn_on_attn = on_attn self.to_out = nn.Sequential(nn.Linear(v_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(v_dim, dim) self.rel_pos_bias = rel_pos_bias if rel_pos_bias: assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance' self.rel_pos = RelativePositionBias(scale=dim_head ** 0.5, causal=causal, heads=heads, num_buckets=rel_pos_num_buckets, max_distance=rel_pos_max_distance) # init output projection 0 if zero_init_output: init_zero_(self.to_out) def forward( self, x, context=None, mask=None, context_mask=None, attn_mask=None, sinusoidal_emb=None, rotary_pos_emb=None, prev_attn=None, mem=None, layer_past=None, ): b, n, _, h, talking_heads, collab_heads, head_scale, scale, device, has_context = *x.shape, self.heads, self.talking_heads, self.collab_heads, self.head_scale, self.scale, x.device, exists( context) kv_input = default(context, x) q_input = x k_input = kv_input v_input = kv_input if exists(mem): k_input = torch.cat((mem, k_input), dim=-2) v_input = torch.cat((mem, v_input), dim=-2) if exists(sinusoidal_emb): # in shortformer, the query would start at a position offset depending on the past cached memory offset = k_input.shape[-2] - q_input.shape[-2] q_input = q_input + sinusoidal_emb(q_input, offset=offset) k_input = k_input + sinusoidal_emb(k_input) q = self.to_q(q_input) k = self.to_k(k_input) v = self.to_v(v_input) if not collab_heads: q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) else: q = einsum('b i d, h d -> b h i d', q, self.collab_mixing) k = rearrange(k, 'b n d -> b () n d') v = rearrange(v, 'b n (h d) -> b h n d', h=h) if layer_past is not None: past_key, past_value = layer_past k = torch.cat([past_key, k], dim=-2) v = torch.cat([past_value, v], dim=-2) k_cache = k v_cache = v if exists(rotary_pos_emb) and not has_context: l = rotary_pos_emb.shape[-1] (ql, qr), (kl, kr), (vl, vr) = map(lambda t: (t[..., :l], t[..., l:]), (q, k, v)) ql, kl, vl = map(lambda t: apply_rotary_pos_emb(t, rotary_pos_emb), (ql, kl, vl)) q, k, v = map(lambda t: torch.cat(t, dim=-1), ((ql, qr), (kl, kr), (vl, vr))) input_mask = None if any(map(exists, (mask, context_mask))): q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool()) k_mask = q_mask if not exists(context) else context_mask k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool()) q_mask = rearrange(q_mask, 'b i -> b () i ()') k_mask = rearrange(k_mask, 'b j -> b () () j') input_mask = q_mask * k_mask if self.num_mem_kv > 0: mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v)) k = torch.cat((mem_k, k), dim=-2) v = torch.cat((mem_v, v), dim=-2) if exists(input_mask): input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True) if collab_heads: k = k.expand(-1, h, -1, -1) if self.qk_norm: q, k = map(l2norm, (q, k)) scale = 1 / (self.scale.exp().clamp(min=1e-2)) dots = einsum('b h i d, b h j d -> b h i j', q, k) * scale mask_value = max_neg_value(dots) if exists(prev_attn): dots = dots + prev_attn pre_softmax_attn = dots.clone() if talking_heads: dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous() if self.rel_pos_bias: dots = self.rel_pos(dots) if exists(input_mask): dots.masked_fill_(~input_mask, mask_value) del input_mask if exists(attn_mask): assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4' if attn_mask.ndim == 2: attn_mask = rearrange(attn_mask, 'i j -> () () i j') elif attn_mask.ndim == 3: attn_mask = rearrange(attn_mask, 'h i j -> () h i j') dots.masked_fill_(~attn_mask, mask_value) if exists(self.max_attend_past): i, j = dots.shape[-2:] range_q = torch.arange(j - i, j, device=device) range_k = torch.arange(j, device=device) dist = rearrange(range_q, 'i -> () () i ()') - rearrange(range_k, 'j -> () () () j') mask = dist > self.max_attend_past dots.masked_fill_(mask, mask_value) del mask if self.causal: i, j = dots.shape[-2:] r = torch.arange(i, device=device) mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j') mask = F.pad(mask, (j - i, 0), value=False) dots.masked_fill_(mask, mask_value) del mask if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]: top, _ = dots.topk(self.sparse_topk, dim=-1) vk = top[..., -1].unsqueeze(-1).expand_as(dots) mask = dots < vk dots.masked_fill_(mask, mask_value) del mask attn = self.attn_fn(dots, dim=-1) post_softmax_attn = attn.clone() attn = self.dropout(attn) if talking_heads: attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous() out = einsum('b h i j, b h j d -> b h i d', attn, v) if head_scale: out = out * self.head_scale_params out = rearrange(out, 'b h n d -> b n (h d)') if exists(self.to_v_gate): gates = self.to_v_gate(x) out = out * gates.sigmoid() intermediates = Intermediates( pre_softmax_attn=pre_softmax_attn, post_softmax_attn=post_softmax_attn ) return self.to_out(out), intermediates, k_cache, v_cache class AttentionLayers(nn.Module): def __init__( self, dim, depth, heads=8, causal=False, cross_attend=False, only_cross=False, use_scalenorm=False, use_rms_scaleshift_norm=False, use_rmsnorm=False, use_rezero=False, alibi_pos_bias=False, alibi_num_heads=None, alibi_learned=False, position_infused_attn=False, rotary_pos_emb=False, rotary_emb_dim=None, custom_layers=None, sandwich_coef=None, par_ratio=None, residual_attn=False, cross_residual_attn=False, macaron=False, pre_norm=True, gate_residual=False, scale_residual=False, shift_tokens=0, sandwich_norm=False, use_qk_norm_attn=False, qk_norm_attn_seq_len=None, zero_init_branch_output=False, **kwargs ): super().__init__() ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs) attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs) dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD) self.dim = dim self.depth = depth self.layers = nn.ModuleList([]) self.causal = causal rel_pos_bias = 'rel_pos_bias' in attn_kwargs self.has_pos_emb = position_infused_attn or rel_pos_bias or rotary_pos_emb self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32) self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim) if rotary_pos_emb else None assert not ( alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both' if alibi_pos_bias: alibi_num_heads = default(alibi_num_heads, heads) assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads' alibi_pos_klass = LearnedAlibiPositionalBias if alibi_learned or not causal else AlibiPositionalBias self.rel_pos = alibi_pos_klass(heads=alibi_num_heads, bidirectional=not causal) else: self.rel_pos = None assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm' self.pre_norm = pre_norm self.sandwich_norm = sandwich_norm self.residual_attn = residual_attn self.cross_residual_attn = cross_residual_attn self.cross_attend = cross_attend norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm norm_class = RMSNorm if use_rmsnorm else norm_class norm_class = RMSScaleShiftNorm if use_rms_scaleshift_norm else norm_class norm_fn = partial(norm_class, dim) norm_fn = nn.Identity if use_rezero else norm_fn branch_fn = Rezero if use_rezero else None if cross_attend and not only_cross: default_block = ('a', 'c', 'f') elif cross_attend and only_cross: default_block = ('c', 'f') else: default_block = ('a', 'f') if macaron: default_block = ('f',) + default_block # qk normalization if use_qk_norm_attn: attn_scale_init_value = -math.log(math.log2(qk_norm_attn_seq_len ** 2 - qk_norm_attn_seq_len)) if exists( qk_norm_attn_seq_len) else None attn_kwargs = {**attn_kwargs, 'qk_norm': True, 'scale_init_value': attn_scale_init_value} # zero init if zero_init_branch_output: attn_kwargs = {**attn_kwargs, 'zero_init_output': True} ff_kwargs = {**ff_kwargs, 'zero_init_output': True} # calculate layer block order if exists(custom_layers): layer_types = custom_layers elif exists(par_ratio): par_depth = depth * len(default_block) assert 1 < par_ratio <= par_depth, 'par ratio out of range' default_block = tuple(filter(not_equals('f'), default_block)) par_attn = par_depth // par_ratio depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper par_width = (depth_cut + depth_cut // par_attn) // par_attn assert len(default_block) <= par_width, 'default block is too large for par_ratio' par_block = default_block + ('f',) * (par_width - len(default_block)) par_head = par_block * par_attn layer_types = par_head + ('f',) * (par_depth - len(par_head)) elif exists(sandwich_coef): assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth' layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef else: layer_types = default_block * depth self.layer_types = layer_types self.num_attn_layers = len(list(filter(equals('a'), layer_types))) # calculate token shifting shift_tokens = cast_tuple(shift_tokens, len(layer_types)) # iterate and construct layers for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)): is_last_layer = ind == (len(self.layer_types) - 1) if layer_type == 'a': layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs) elif layer_type == 'c': layer = Attention(dim, heads=heads, **attn_kwargs) elif layer_type == 'f': layer = FeedForward(dim, **ff_kwargs) layer = layer if not macaron else Scale(0.5, layer) else: raise Exception(f'invalid layer type {layer_type}') if layer_shift_tokens > 0: shift_range_upper = layer_shift_tokens + 1 shift_range_lower = -layer_shift_tokens if not causal else 0 layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer) if exists(branch_fn): layer = branch_fn(layer) residual_fn = GRUGating if gate_residual else Residual residual = residual_fn(dim, scale_residual=scale_residual) layer_uses_qk_norm = use_qk_norm_attn and layer_type in ('a', 'c') pre_branch_norm = norm_fn() if pre_norm and not layer_uses_qk_norm else None post_branch_norm = norm_fn() if sandwich_norm or layer_uses_qk_norm else None post_main_norm = norm_fn() if not pre_norm and not is_last_layer else None norms = nn.ModuleList([ pre_branch_norm, post_branch_norm, post_main_norm ]) self.layers.append(nn.ModuleList([ norms, layer, residual ])) def forward( self, x, context=None, full_context=None, # for passing a list of hidden states from an encoder mask=None, context_mask=None, attn_mask=None, mems=None, return_hiddens=False, norm_scale_shift_inp=None, past_key_values=None, expected_seq_len=None, ): assert not (self.cross_attend ^ (exists(context) or exists( full_context))), 'context must be passed in if cross_attend is set to True' assert context is None or full_context is None, 'only one of full_context or context can be provided' hiddens = [] intermediates = [] prev_attn = None prev_cross_attn = None mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers norm_args = {} if exists(norm_scale_shift_inp): norm_args['norm_scale_shift_inp'] = norm_scale_shift_inp rotary_pos_emb = None if exists(self.rotary_pos_emb): if not self.training and self.causal: assert expected_seq_len is not None, "To decode a transformer with rotary embeddings, you must specify an `expected_seq_len`" elif expected_seq_len is None: expected_seq_len = 0 seq_len = x.shape[1] if past_key_values is not None: seq_len += past_key_values[0][0].shape[-2] max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + seq_len, mems)) + [expected_seq_len]) rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length, x.device) present_key_values = [] cross_attn_count = 0 for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)): if layer_type == 'a': layer_mem = mems.pop(0) if mems else None residual = x pre_branch_norm, post_branch_norm, post_main_norm = norm if exists(pre_branch_norm): x = pre_branch_norm(x, **norm_args) if layer_type == 'a' or layer_type == 'c': if past_key_values is not None: layer_kv = past_key_values.pop(0) layer_past = tuple(s.to(x.device) for s in layer_kv) else: layer_past = None if layer_type == 'a': out, inter, k, v = checkpoint(block, x, None, mask, None, attn_mask, self.pia_pos_emb, rotary_pos_emb, prev_attn, layer_mem, layer_past) elif layer_type == 'c': if exists(full_context): out, inter, k, v = checkpoint(block, x, full_context[cross_attn_count], mask, context_mask, None, None, None, prev_attn, None, layer_past) else: out, inter, k, v = checkpoint(block, x, context, mask, context_mask, None, None, None, prev_attn, None, layer_past) elif layer_type == 'f': out = checkpoint(block, x) if layer_type == 'a' or layer_type == 'c' and present_key_values is not None: present_key_values.append((k.detach(), v.detach())) if exists(post_branch_norm): out = post_branch_norm(out, **norm_args) x = residual_fn(out, residual) if layer_type in ('a', 'c'): intermediates.append(inter) if layer_type == 'a' and self.residual_attn: prev_attn = inter.pre_softmax_attn elif layer_type == 'c' and self.cross_residual_attn: prev_cross_attn = inter.pre_softmax_attn if exists(post_main_norm): x = post_main_norm(x, **norm_args) if layer_type == 'c': cross_attn_count += 1 if layer_type == 'f': hiddens.append(x) if return_hiddens: intermediates = LayerIntermediates( hiddens=hiddens, attn_intermediates=intermediates, past_key_values=present_key_values ) return x, intermediates return x class Encoder(AttentionLayers): def __init__(self, **kwargs): assert 'causal' not in kwargs, 'cannot set causality on encoder' super().__init__(causal=False, **kwargs) class Decoder(AttentionLayers): def __init__(self, **kwargs): assert 'causal' not in kwargs, 'cannot set causality on decoder' super().__init__(causal=True, **kwargs) class CrossAttender(AttentionLayers): def __init__(self, **kwargs): super().__init__(cross_attend=True, only_cross=True, **kwargs) class ViTransformerWrapper(nn.Module): def __init__( self, *, image_size, patch_size, attn_layers, num_classes=None, dropout=0., emb_dropout=0. ): super().__init__() assert isinstance(attn_layers, Encoder), 'attention layers must be an Encoder' assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size' dim = attn_layers.dim num_patches = (image_size // patch_size) ** 2 patch_dim = 3 * patch_size ** 2 self.patch_size = patch_size self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.patch_to_embedding = nn.Linear(patch_dim, dim) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) self.attn_layers = attn_layers self.norm = nn.LayerNorm(dim) self.mlp_head = FeedForward(dim, dim_out=num_classes, dropout=dropout) if exists(num_classes) else None def forward( self, img, return_embeddings=False ): p = self.patch_size x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=p, p2=p) x = self.patch_to_embedding(x) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b=b) x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embedding[:, :(n + 1)] x = self.dropout(x) x = self.attn_layers(x) x = self.norm(x) if not exists(self.mlp_head) or return_embeddings: return x return self.mlp_head(x[:, 0]) class TransformerWrapper(nn.Module): def __init__( self, *, num_tokens, max_seq_len, attn_layers, emb_dim=None, max_mem_len=0., shift_mem_down=0, emb_dropout=0., num_memory_tokens=None, tie_embedding=False, use_pos_emb=True ): super().__init__() assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' dim = attn_layers.dim emb_dim = default(emb_dim, dim) self.max_seq_len = max_seq_len self.max_mem_len = max_mem_len self.shift_mem_down = shift_mem_down self.token_emb = nn.Embedding(num_tokens, emb_dim) self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if ( use_pos_emb and not attn_layers.has_pos_emb) else always(0) self.emb_dropout = nn.Dropout(emb_dropout) self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() self.attn_layers = attn_layers self.norm = nn.LayerNorm(dim) self.init_() self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t() # memory tokens (like [cls]) from Memory Transformers paper num_memory_tokens = default(num_memory_tokens, 0) self.num_memory_tokens = num_memory_tokens if num_memory_tokens > 0: self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) def init_(self): nn.init.kaiming_normal_(self.token_emb.weight) def forward( self, x, return_embeddings=False, mask=None, return_hiddens=False, return_attn=False, mems=None, use_cache=False, **kwargs ): b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens x = self.token_emb(x) x = x + self.pos_emb(x) x = self.emb_dropout(x) x = self.project_emb(x) if num_mem > 0: mem = repeat(self.memory_tokens, 'n d -> b n d', b=b) x = torch.cat((mem, x), dim=1) # auto-handle masking after appending memory tokens if exists(mask): mask = F.pad(mask, (num_mem, 0), value=True) if self.shift_mem_down and exists(mems): mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:] mems = [*mems_r, *mems_l] x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs) x = self.norm(x) mem, x = x[:, :num_mem], x[:, num_mem:] out = self.to_logits(x) if not return_embeddings else x if return_hiddens: hiddens = intermediates.hiddens return out, hiddens res = [out] if return_attn: attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) res.append(attn_maps) if use_cache: res.append(intermediates.past_key_values) if len(res) > 1: return tuple(res) return res[0] class ContinuousTransformerWrapper(nn.Module): def __init__( self, *, max_seq_len, attn_layers, dim_in=None, dim_out=None, emb_dim=None, emb_dropout=0., use_pos_emb=True ): super().__init__() assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' dim = attn_layers.dim self.max_seq_len = max_seq_len self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len) if ( use_pos_emb and not attn_layers.has_pos_emb) else always(0) self.emb_dropout = nn.Dropout(emb_dropout) self.project_in = nn.Linear(dim_in, dim) if exists(dim_in) else nn.Identity() self.attn_layers = attn_layers self.norm = nn.LayerNorm(dim) self.project_out = nn.Linear(dim, dim_out) if exists(dim_out) else nn.Identity() def forward( self, x, return_embeddings=False, mask=None, return_attn=False, mems=None, use_cache=False, **kwargs ): b, n, _, device = *x.shape, x.device x = self.project_in(x) x = x + self.pos_emb(x) x = self.emb_dropout(x) x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs) x = self.norm(x) out = self.project_out(x) if not return_embeddings else x res = [out] if return_attn: attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) res.append(attn_maps) if use_cache: res.append(intermediates.past_key_values) if len(res) > 1: return tuple(res) return res[0]