import cv2 import einops import gradio as gr import numpy as np import torch from cldm.hack import disable_verbosity disable_verbosity() from pytorch_lightning import seed_everything from annotator.util import resize_image, HWC3 from cldm.model import create_model, load_state_dict from ldm.models.diffusion.ddim import DDIMSampler def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta): with torch.no_grad(): img = resize_image(HWC3(input_image['mask'][:, :, 0]), image_resolution) H, W, C = img.shape detected_map = np.zeros_like(img, dtype=np.uint8) detected_map[np.min(img, axis=2) > 127] = 255 control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 control = torch.stack([control for _ in range(num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() seed_everything(seed) cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} un_cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} shape = (4, H // 8, W // 8) samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=un_cond) x_samples = model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] return [255 - detected_map] + results def create_canvas(w, h): return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255