{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f07633e1cf0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680230870243193512, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVlgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZC9ob21lL2pvaG5lYmxha2UvbWFtYmFmb3JnZS9lbnZzL3VuaXQ2L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMp+xT6jOHM/otN+Prc3obymn32/J88sP0fPcL+KbH2/H7rWvze44L9UMCy/M4l5P+8nZL/W7vG+66IqP6toHb/KR6k/Rn9hv6hQmb/5Dsy/7Klwv8v0FT42d8E/EkZSvqyehb+MKgE/9JoAwGWmYT9SSCo/FNdGv0HBoD5u6b0/+8W4Ptj0z75EwdG+yHGcvrPiVD92KBi/w2UQPzkFCT8xXpQ9YR0RwHXuXj9hlyw8Nb2Rvgrvor+3OhC/aYe2P9w0bb/JBCA8RLmNvlT8aMCrO3U/TLD9v4zL/j5PN5G/Ob86P2/huD5vEP8+91ujP+IZ7T85tZw/XSLKvYywmL810sI+p7XMPspJXr8NPBG+lp2OP3rrrj+DaF8/0L+VPFniqj+0qju89qwqv+ETnr58PfK+3ncuvzuw8z9KMKk9rJ6Fv4wqAT+My/4+ZaZhP7Ndyr06yom/vofaPX4lsD7DDYI/lwJNv3iaV7/Bg3e+ne8XPxnPFz8eYu+9e1HIPsnG9z8l/YK9U/FgP1mstb09RDI/rfWGvon4Ob/HE4M/319vv27K/j748Tg/vgzxvqyehb+MKgE/jMv+Pk83kb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACBWQS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUvr/PQAAAABMX+C/AAAAAMtrDz4AAAAAa032PwAAAABnBO08AAAAAHvo7j8AAAAA0SkKPgAAAADp1t+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/EANQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgO7+gr0AAAAA71T4vwAAAAD4zpq9AAAAALoF6T8AAAAA4NmuvQAAAAAL7OY/AAAAAHTD/b0AAAAAThEBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI3bRrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAMT+U9AAAAAJEJ678AAAAATFi6PQAAAACWDe4/AAAAAPvRcL0AAAAA6pf6PwAAAADnnjG9AAAAABLq878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3Bs2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHAAUvQAAAAA9eu+/AAAAANqP1z0AAAAA7s7sPwAAAABN9is9AAAAAPhF+T8AAAAA+9OrPQAAAADxGfW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJmZEBxPwd+MAWyUTegDjAF0lEdApKknD1oQF3V9lChoBkdAmv5WICU5dWgHTegDaAhHQKSpdkd3jdZ1fZQoaAZHQJoBuHk92X9oB03oA2gIR0CkqcxekYXPdX2UKGgGR0CbldHjZL7GaAdN6ANoCEdApLFYB3iaRnV9lChoBkdAkEqmzfJmumgHTegDaAhHQKS0TJf6XSl1fZQoaAZHQJhFEVpKzzFoB03oA2gIR0CktJUo0ALidX2UKGgGR0CaPPchTwUhaAdN6ANoCEdApLTjR6Ww/3V9lChoBkdAngrWUKRdQmgHTegDaAhHQKS8C4o7V8V1fZQoaAZHQJ7IOJJoTPBoB03oA2gIR0CkvvBKlHjIdX2UKGgGR0Cabd9lmOENaAdN6ANoCEdApL80z0pVj3V9lChoBkdAnTrV8b70nWgHTegDaAhHQKS/iSg5BC51fZQoaAZHQJ0zSxjawlloB03oA2gIR0CkxpXKbKA8dX2UKGgGR0Cb3sjW07bMaAdN6ANoCEdApMlvaews5HV9lChoBkdAmq9Tj7yhBmgHTegDaAhHQKTJvJOnEVF1fZQoaAZHQJo3zI1cdHVoB03oA2gIR0CkyhNvfj0ddX2UKGgGR0Cc1GVIZqEfaAdN6ANoCEdApNFykqMFU3V9lChoBkdAnP/buYx+KGgHTegDaAhHQKTU1mr8zhx1fZQoaAZHQJsVMiml67doB03oA2gIR0Ck1RnQhOgydX2UKGgGR0CalAtsN2C/aAdN6ANoCEdApNV7uKGcnXV9lChoBkdAnPUHTqjaf2gHTegDaAhHQKTc162v0RR1fZQoaAZHQJZ5qI+GGmFoB03oA2gIR0Ck37NayKNydX2UKGgGR0CXoxg62fCiaAdN6ANoCEdApN/76UJOWXV9lChoBkdAmN/+aF23a2gHTegDaAhHQKTgR4keIVN1fZQoaAZHQJ3nw052hZhoB03oA2gIR0Ck54/1xsEadX2UKGgGR0CeKNZWaMJhaAdN6ANoCEdApOp7U/fO2XV9lChoBkdAnsMBQizLOmgHTegDaAhHQKTqvuSfUWl1fZQoaAZHQKAsztpmEoRoB03oA2gIR0Ck6xY7JW/8dX2UKGgGR0CdOaBiTdLyaAdN6ANoCEdApPImhbnoxHV9lChoBkdAnN7OI/JNkGgHTegDaAhHQKT06MnZ00Z1fZQoaAZHQJ1zPevZAY5oB03oA2gIR0Ck9SwMYuTSdX2UKGgGR0CfkP8twrDqaAdN6ANoCEdApPV8JY1YQ3V9lChoBkdAnY8/336AOWgHTegDaAhHQKT83LYf4h51fZQoaAZHQJ8OZDRc/t9oB03oA2gIR0ClAAzCtRvWdX2UKGgGR0CgzxtJWeYlaAdN6ANoCEdApQBgpjMFEHV9lChoBkdAn07CDmKZUmgHTegDaAhHQKUAxBTGYKJ1fZQoaAZHQKBofwZOzppoB03oA2gIR0ClCC/dZaFFdX2UKGgGR0Cfv0NdZ7ojaAdN6ANoCEdApQr7blA/s3V9lChoBkdAoFDxjz7MxGgHTegDaAhHQKULQf1YhdN1fZQoaAZHQJ12+UzKs+5oB03oA2gIR0ClC5rF4s3AdX2UKGgGR0CaO3pobn5jaAdN6ANoCEdApRLMV8CxNnV9lChoBkdAmTS3yNGViWgHTegDaAhHQKUVxwCKaXt1fZQoaAZHQJnPEzKs+3ZoB03oA2gIR0ClFgqHfuTidX2UKGgGR0CXCpn6l+EzaAdN6ANoCEdApRZnmA9V3nV9lChoBkdAnNi207bL2mgHTegDaAhHQKUdPRdhRZV1fZQoaAZHQJ3R7tzCDVZoB03oA2gIR0ClH/bcfvF4dX2UKGgGR0CXjpS5iExqaAdN6ANoCEdApSBDQNTcZnV9lChoBkdAnmcZdGAkLWgHTegDaAhHQKUglHlOoHd1fZQoaAZHQJ3N7teD3/RoB03oA2gIR0ClKFlkQPI5dX2UKGgGR0Cb2NJCSidraAdN6ANoCEdApSumIyj59HV9lChoBkdAnR0f9gnc+WgHTegDaAhHQKUsAI+nqFB1fZQoaAZHQJ473+ZPVNJoB03oA2gIR0ClLFxHG0eEdX2UKGgGR0CbgbK3d9DyaAdN6ANoCEdApTOGrU9ZBHV9lChoBkdAnPYycslLOGgHTegDaAhHQKU2YzVMEid1fZQoaAZHQJmfs/FBIFxoB03oA2gIR0ClNqtpmEoOdX2UKGgGR0Ce5xuNPxhEaAdN6ANoCEdApTcD9S/CZXV9lChoBkdAmvK5OnEVFmgHTegDaAhHQKU+R0dzXBh1fZQoaAZHQJ5WZYdQwbloB03oA2gIR0ClQWTDfm9ydX2UKGgGR0CeHqxcmjTKaAdN6ANoCEdApUG7ZYgaFXV9lChoBkdAnEphoh6jWWgHTegDaAhHQKVCCbvPTod1fZQoaAZHQJnd7ljmSyNoB03oA2gIR0ClSQrxRVIadX2UKGgGR0CY2GM4tHx0aAdN6ANoCEdApUv2XHBDX3V9lChoBkdAmXjrrgOz6mgHTegDaAhHQKVMRSGahHt1fZQoaAZHQJ3PGAEt/WloB03oA2gIR0ClTJWAwwj/dX2UKGgGR0CW/4BgeA/caAdN6ANoCEdApVRhuAI6bXV9lChoBkdAnUGcbaRISWgHTegDaAhHQKVXjYChew91fZQoaAZHQJoSfFKkEcNoB03oA2gIR0ClV97tAs06dX2UKGgGR0CcdBt3fQ8faAdN6ANoCEdApVg22Zy+6HV9lChoBkdAmRFjgZTAFmgHTegDaAhHQKVfZqREF4d1fZQoaAZHQJmZwxQBPsRoB03oA2gIR0ClYl3umaYvdX2UKGgGR0CUZPxEORT1aAdN6ANoCEdApWKkqFyq/HV9lChoBkdAm36qISDh+GgHTegDaAhHQKVjD8aXKKZ1fZQoaAZHQJoDdC0F8ohoB03oA2gIR0ClaoO801qGdX2UKGgGR0CaTpyTY/VzaAdN6ANoCEdApW2XEXLvC3V9lChoBkdAl9zX+VC5VmgHTegDaAhHQKVt3RXwLE11fZQoaAZHQJ10RGz8gp1oB03oA2gIR0Clbi+gte2NdX2UKGgGR0CZo9L7GecyaAdN6ANoCEdApXVU9nscAHV9lChoBkdAmtJBKg7HQ2gHTegDaAhHQKV4OQ8OkLx1fZQoaAZHQJnUpR2r4nFoB03oA2gIR0CleI6P0Zm7dX2UKGgGR0Cd8sUB4lhPaAdN6ANoCEdApXj9J8OTaHV9lChoBkdAj4lJ40Mw12gHTegDaAhHQKWBYukDZDl1fZQoaAZHQJ2/ZkZrHlxoB03oA2gIR0ClhF+n62v0dX2UKGgGR0CdpFVD8cdYaAdN6ANoCEdApYSrrZ8KHHV9lChoBkdAm/Y+gL7XQWgHTegDaAhHQKWE+XmeUY91fZQoaAZHQJyss0waisZoB03oA2gIR0CljCPjOs1bdX2UKGgGR0CeNZp48lolaAdN6ANoCEdApY8V18stkHV9lChoBkdAnOaNMPBi1GgHTegDaAhHQKWPbXtjTa11fZQoaAZHQJw3fLZBcA1oB03oA2gIR0Clj7sM7U5NdX2UKGgGR0CfAqxVyWAxaAdN6ANoCEdApZdZ8hLXc3V9lChoBkdAmgRGl/H5rWgHTegDaAhHQKWaPXHzYmN1fZQoaAZHQJ6EkvHtF8ZoB03oA2gIR0Clmo/pUxVRdX2UKGgGR0CcqFOMVDa5aAdN6ANoCEdApZrgxFiKBXV9lChoBkdAnWiHJo0yg2gHTegDaAhHQKWhuGcnVoZ1fZQoaAZHQJzyOeyzHCJoB03oA2gIR0ClpMO/UONHdX2UKGgGR0CbZH++ueSTaAdN6ANoCEdApaUGryUcGXV9lChoBkdAnH4VpsXSB2gHTegDaAhHQKWlZ9Ujs2N1fZQoaAZHQJ0or4k/r0JoB03oA2gIR0ClrWQJPZZkdX2UKGgGR0CdoouW8h9taAdN6ANoCEdApbBvZqVQh3V9lChoBkdAnabAWepXIWgHTegDaAhHQKWwugX/HYJ1fZQoaAZHQJ3lb0Fr2xpoB03oA2gIR0ClsQ1pblijdX2UKGgGR0CeRS/QjUutaAdN6ANoCEdApbgu7+T/yXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.10 #1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}