--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-base-patch4-window7-224-20epochs-finetuned-memes results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.847758887171561 - task: type: image-classification name: Image Classification dataset: type: custom name: custom split: test metrics: - type: f1 value: 0.8504084378729573 name: F1 --- # swin-base-patch4-window7-224-20epochs-finetuned-memes This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7090 - Accuracy: 0.8478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00012 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0238 | 0.99 | 40 | 0.9636 | 0.6445 | | 0.777 | 1.99 | 80 | 0.6591 | 0.7666 | | 0.4763 | 2.99 | 120 | 0.5381 | 0.8130 | | 0.3215 | 3.99 | 160 | 0.5244 | 0.8253 | | 0.2179 | 4.99 | 200 | 0.5123 | 0.8238 | | 0.1868 | 5.99 | 240 | 0.5052 | 0.8308 | | 0.154 | 6.99 | 280 | 0.5444 | 0.8338 | | 0.1166 | 7.99 | 320 | 0.6318 | 0.8238 | | 0.1099 | 8.99 | 360 | 0.5656 | 0.8338 | | 0.0925 | 9.99 | 400 | 0.6057 | 0.8338 | | 0.0779 | 10.99 | 440 | 0.5942 | 0.8393 | | 0.0629 | 11.99 | 480 | 0.6112 | 0.8400 | | 0.0742 | 12.99 | 520 | 0.6588 | 0.8331 | | 0.0752 | 13.99 | 560 | 0.6143 | 0.8408 | | 0.0577 | 14.99 | 600 | 0.6450 | 0.8516 | | 0.0589 | 15.99 | 640 | 0.6787 | 0.8400 | | 0.0555 | 16.99 | 680 | 0.6641 | 0.8454 | | 0.052 | 17.99 | 720 | 0.7213 | 0.8524 | | 0.0589 | 18.99 | 760 | 0.6917 | 0.8470 | | 0.0506 | 19.99 | 800 | 0.7090 | 0.8478 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1