--- tags: - generated_from_trainer metrics: - f1 model-index: - name: rtmex23-pol4-cardif results: [] --- # rtmex23-pol4-cardif This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6787 - F1: 0.8463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:------:|:---------------:|:------:| | 0.7006 | 1.0 | 17996 | 0.6293 | 0.6758 | | 0.5558 | 2.0 | 35992 | 0.5515 | 0.7590 | | 0.4566 | 3.0 | 53988 | 0.5066 | 0.7939 | | 0.3855 | 4.0 | 71984 | 0.4959 | 0.8217 | | 0.3258 | 5.0 | 89980 | 0.5075 | 0.8200 | | 0.2744 | 6.0 | 107976 | 0.5251 | 0.8409 | | 0.2322 | 7.0 | 125972 | 0.5889 | 0.8461 | | 0.2029 | 8.0 | 143968 | 0.6787 | 0.8463 | ### Framework versions - Transformers 4.29.1 - Pytorch 1.13.1 - Datasets 2.12.0 - Tokenizers 0.13.3