import copy import warnings from typing import Any, Dict, List, Optional, Union import torch import torchvision.transforms.functional as F from transformers import BatchEncoding from transformers.processing_utils import ProcessorMixin def to_tensor(x): """ Convert a nested structure of numpy arrays or tensors (including lists and tuples of them) into a tensor. Assumes that all nested structures can be converted into a tensor directly. :param x: Nested structure containing numpy arrays, tensors, lists, or tuples :return: torch.Tensor """ with warnings.catch_warnings(): # Convert specific warning to an error warnings.filterwarnings( "error", category=UserWarning, message=".*Creating a tensor from a list of numpy.ndarrays is extremely slow.*", ) try: return torch.Tensor(x) except Exception: if isinstance(x, list): return torch.stack([to_tensor(item) for item in x]) else: raise TypeError("Unsupported type for conversion to tensor") def truncate( encoding: Dict[str, List[List[Any]]], max_length: int, truncation_side: str = "right", preserve: bool = False ) -> Dict[str, List[List[Any]]]: """ Truncate the sequences in the encoding to the specified maximum length. This function is designed to process batch of sequences represented in the encoding dictionary. Depending on the chosen strategy, sequences are either truncated with loss of residual data or with preservation and incorporation of residual data into the batch. Args: encoding (`Mapping`): A dictionary where each key-value pair consists of a feature name and its corresponding batch of sequences. The sequences are expected to be lists. max_length (`int`): The maximum allowable length for the sequences. truncation_side (`str`, **optional**): The strategy to use for truncation. Can be `"left"` or `"right"`. Defaults to `"right"`. preserve (`bool`, **optional**): Whether to preserve the residual data by adding them as new sequences in the batch. Defaults to `False`. Returns: `Dict[str, List[List[Any]]]`: A dictionary with the same keys as the input `encoding`, containing the truncated batch of sequences. If `preserve` is set to `True`, the batch size may increase due to the addition of new sequences formed from the residual data. Example: >>> encoding = {'feature1': [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]} >>> truncate(encoding, 3, preserve=False) {'feature1': [[1, 2, 3], [6, 7, 8]]} >>> truncate(encoding, 3, preserve=True) {'feature1': [[1, 2, 3], [4, 5], [6, 7, 8], [9, 10]]} """ truncated_encoding = {} for key, sequences in encoding.items(): if not all(isinstance(seq, list) for seq in sequences): raise TypeError(f"All sequences under key {key} should be of type list.") truncated_sequences = [] for seq in sequences: if len(seq) <= max_length: truncated_sequences.append(seq) continue if preserve: # truncate and append the residual as new sequences if truncation_side == "right": truncated_sequences.extend([seq[i : i + max_length] for i in range(0, len(seq), max_length)]) elif truncation_side == "left": n = len(seq) // max_length + int(len(seq) % max_length > 0) low, high = len(seq) - n * max_length, len(seq) truncated_sequences.extend( [seq[max(0, i - max_length) : i] for i in range(high, low, -max_length)] ) else: raise ValueError(f"Invalid truncation_side: {truncation_side}") else: # simply truncate the sequence if truncation_side == "right": truncated_sequences.append(seq[:max_length]) elif truncation_side == "left": truncated_sequences.append(seq[-max_length:]) truncated_encoding[key] = truncated_sequences return truncated_encoding def pad(encoding: Dict[str, List[List[Any]]], target_length: int) -> Dict[str, List[List[Any]]]: """ Pad the sequences in the encoding to the specified maximum length. This function is designed to process batch of sequences represented in the encoding dictionary. The padding value is set to be the first element in the sequence. Args: encoding (`Mapping`): A dictionary where each key-value pair consists of a feature name and its corresponding batch of sequences. The sequences are expected to be lists. target_length (`int`): The desired length for the sequences. Returns: `Dict[str, List[List[Any]]]`: A dictionary with the same keys as the input `encoding`, containing the padded batch of sequences. An additional key `attention_mask` is added to the dictionary to indicate the positions of the non-padding elements with 1s and the padding elements with 0s. If the input `encoding` already contains an `attention_mask` key, the corresponding mask will be updated such that the original masking is preserved, and the newly added padding elements will be masked with 0s. In other words, the resulting `attention_mask` is a logical "AND" between the provided mask and the mask created due to padding, ensuring that any element masked originally remains masked. Example: >>> encoding = {'feature1': [[1, 2], [3, 4, 5]]} >>> pad(encoding, 4) {'feature1': [[1, 2, 1, 1], [3, 4, 5, 3]], 'attention_mask': [[1, 1, 0, 0], [1, 1, 1, 0]]} >>> encoding = {'feature1': [[1, 2], [3, 4, 5]], "attention_mask": [[1, 0], [0, 1, 1]]} >>> pad(encoding, 4) {'feature1': [[1, 2, 1, 1], [3, 4, 5, 3]], 'attention_mask': [[1, 0, 0, 0], [0, 1, 1, 0]]} """ padded_encoding = {} for key, sequences in encoding.items(): if not all(isinstance(seq, (list, torch.Tensor)) for seq in sequences): raise TypeError(f"All sequences under key {key} should be of type list or tensor.") if key == "attention_mask": # attention_mask is handled separately continue padded_sequences = [] pad_mask = [] for seq in sequences: pad_len = target_length - len(seq) padded_seq = list(seq) + [seq[0]] * max(0, pad_len) mask = [1] * len(seq) + [0] * max(0, pad_len) padded_sequences.append(padded_seq) pad_mask.append(mask) padded_encoding[key] = padded_sequences if "attention_mask" in encoding: padded_encoding["attention_mask"] = [ [a * (b[i] if i < len(b) else 0) for i, a in enumerate(row)] for row, b in zip(pad_mask, encoding["attention_mask"]) ] else: padded_encoding["attention_mask"] = pad_mask return padded_encoding class JatProcessor(ProcessorMixin): r""" JAT processor which wraps a CLIP image processor and a BERT tokenizer into a single processor. [`JatProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BertTokenizerFast`]. See the [`~JatProcessor.__call__`] and [`~JatProcessor.decode`] for more information. Args: image_processor ([`AutoImageProcessor`]): The image processor is a required input. tokenizer ([`AutoTokenizer`]): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "AutoImageProcessor" tokenizer_class = "AutoTokenizer" DONT_TRUNCATE_OR_PAD = {"pixel_values"} # Or, a better name for this would be def __init__(self, image_processor, tokenizer): super().__init__(image_processor, tokenizer) self.current_processor = self.image_processor def _truncate_and_pad( self, encoding: dict, padding: Union[bool, str], truncation: Union[bool, str], truncation_side: str = "right", max_length: Optional[int] = None, ) -> dict: # If max_length is not provided, use the maximum length accepted by the model. if max_length is None: max_length = self.tokenizer.model_max_length # Exclude keys that we don't want to truncate or pad. excluded = {key: value for key, value in encoding.items() if key in self.DONT_TRUNCATE_OR_PAD} encoding = {key: value for key, value in encoding.items() if key not in self.DONT_TRUNCATE_OR_PAD} # Apply Truncation if truncation in [True, "lossy"]: encoding = truncate(encoding, max_length, truncation_side, preserve=False) elif truncation == "preserve": encoding = truncate(encoding, max_length, truncation_side, preserve=True) elif truncation in [False, "do_not_truncate"]: pass else: raise ValueError("Invalid truncation strategy:" + str(truncation)) # Apply Padding if padding in [True, "longest"]: target_length = max(len(seq) for sequences in encoding.values() for seq in sequences) encoding = pad(encoding, target_length) elif padding == "max_length": encoding = pad(encoding, max_length) elif padding in [False, "do_not_pad"]: pass else: raise ValueError("Invalid padding strategy:" + str(padding)) # Add back the excluded keys. encoding.update(excluded) # Particular case, we handle the conversion to tensor of image_observations, as the format used # (list of tensors) is not properly handled by the BatchEncoding class: if "image_observations" in encoding: encoding["image_observations"] = to_tensor(encoding["image_observations"]) return encoding def __call__( self, text=None, images=None, continuous_observations=None, discrete_observations=None, text_observations=None, image_observations=None, continuous_actions=None, discrete_actions=None, rewards=None, return_tensors=None, **kwargs, ): """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. continuous_observations (`List[List[List[float]]]`): The continuous observations or batch of continuous observations to be encoded. discrete_observations (`List[List[List[int]]]`): The discrete observations or batch of discrete observations to be encoded. text_observations (`List[List[str]]`): The text observations or batch of text observations to be encoded. image_observations (`List[List[PIL.Image.Image]]`, `List[List[np.ndarray]]`, `List[List[torch.Tensor]]`): The image observations or batch of image observations to be encoded. continuous_actions (`List[List[List[float]]]`): The continuous actions or batch of continuous actions to be encoded. discrete_actions (``List[List[int]]`): The discrete actions or batch of discrete actions to be encoded. rewards (``List[List[float]]`): The rewards or batch of rewards to be encoded. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ # we truncate and pad ourselves so we need to pass padding=False and truncation=False to the tokenizer padding = kwargs.pop("padding", False) truncation = kwargs.pop("truncation", False) truncation_side = kwargs.pop("truncation_side", "right") max_length = kwargs.pop("max_length", None) # Ensure that the input is batched if text is not None and not isinstance(text, list): text = [text] encoding = {} if text is not None: encoding["input_ids"] = self.tokenizer(text, **kwargs)["input_ids"] if images is not None: encoding["pixel_values"] = self.image_processor(images, **kwargs).pixel_values if continuous_observations is not None: encoding["continuous_observations"] = copy.deepcopy(continuous_observations) if discrete_observations is not None: encoding["discrete_observations"] = copy.deepcopy(discrete_observations) if text_observations is not None: if "discrete_observations" not in encoding: raise ValueError("discrete_observations must be provided if text_observations is provided") for batch_idx, sequence in enumerate(text_observations): encoded_text = self.tokenizer(sequence, max_length=64, padding="max_length")["input_ids"] for timestep, text_tokens in enumerate(encoded_text): encoding["discrete_observations"][batch_idx][timestep].extend(text_tokens) if image_observations is not None: image_observations = [[(F.to_tensor(im) - 0.5) / 0.5 for im in ep] for ep in image_observations] encoding["image_observations"] = image_observations if continuous_actions is not None: encoding["continuous_actions"] = copy.deepcopy(continuous_actions) if discrete_actions is not None: encoding["discrete_actions"] = copy.deepcopy(discrete_actions) if rewards is not None: encoding["rewards"] = [[float(r) for r in ep] for ep in rewards] # Handle image+text case, need to reduce the max_len as the image and text will be concatenated if text is not None and images is not None: if max_length is None: max_length = self.tokenizer.model_max_length max_length -= (224 // 16) ** 2 # substract the number of image tokens elif ( continuous_observations is not None or discrete_observations is not None or text_observations is not None or image_observations is not None ): if max_length is None: max_length = self.tokenizer.model_max_length max_length //= 2 # observations and actions are interleaved encoding = self._truncate_and_pad(encoding, padding, truncation, truncation_side, max_length) return BatchEncoding(encoding, tensor_type=return_tensors) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) def pad(self, *args, **kwargs): inputs = args[0] keys = [key for key in inputs[0].keys() if inputs[0][key] is not None] inputs = {key: [arg[key] for arg in inputs] for key in keys} elmt = next(iter(inputs.values())) if isinstance(elmt[0], torch.Tensor) and not isinstance(elmt, torch.Tensor): encoding = {key: torch.stack(inputs[key]) for key in inputs.keys()} else: encoding = self._truncate_and_pad( inputs, padding=kwargs.get("padding", False), truncation=False, max_length=kwargs.get("max_length") ) return BatchEncoding(encoding, tensor_type=kwargs.get("return_tensors")) @property def model_input_names(self): return [ "input_ids", "attention_mask", "pixel_values", "continuous_observations", "discrete_observations", "image_observations", "continuous_actions", "discrete_actions", "rewards", ] JatProcessor.register_for_auto_class("AutoProcessor")