from typing import Dict, List, Any from transformers import AutoProcessor, MarkupLMModel class EndpointHandler(): def __init__(self, path=""): self.processor = AutoProcessor.from_pretrained("microsoft/markuplm-large") self.model = MarkupLMModel.from_pretrained("microsoft/markuplm-large") def __call__(self, data: Any) -> List[List[Dict[str, float]]]: """ Args: data (:obj:): includes the input data and the parameters for the inference. Return: A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : - "label": A string representing what the label/class is. There can be multiple labels. - "score": A score between 0 and 1 describing how confident the model is for this label/class. """ #print(data) inputs = data.pop("inputs", data) encoding = self.processor(inputs, return_tensors="pt") output = self.model(**encoding) return {"last_hidden_state": output.last_hidden_state[0].tolist(), "pooler_output": output.pooler_output[0].tolist()}