---
base_model: sentence-transformers/all-MiniLM-L6-v2
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:17500
- loss:ContrastiveLoss
widget:
- source_sentence: 1 Scenic Unit 110
sentences:
- 1 Scenic Unit 110
- 46 Drew Rear 21
- '110 Nightin - Gale #10'
- source_sentence: 131 Sayre Fl 1
sentences:
- 715 Union Unit Q
- 1 Rustic Apt D26
- 131 Sayre Apt 1
- source_sentence: '731 Eaton # 1'
sentences:
- '1100 Wesley #1'
- '731 Eaton #1'
- 815 Murray Flr 2
- source_sentence: 18 - 01 Pollitt Ste 4
sentences:
- 186 1st Apt 1
- '63 Mountain # A'
- 18 - 01 Pollitt Ste 4
- source_sentence: '612 Madison # 2'
sentences:
- '421 Jersey # 1'
- 8502 Liberty Fl 2
- 612 Madison Apt 2
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: test
type: test
metrics:
- type: pearson_cosine
value: 0.6004811664372558
name: Pearson Cosine
- type: spearman_cosine
value: 0.4540997609838606
name: Spearman Cosine
- type: pearson_manhattan
value: 0.4981741659289101
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.45189578750840304
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.4972646329389563
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.45172321150833644
name: Spearman Euclidean
- type: pearson_dot
value: 0.6004811664029517
name: Pearson Dot
- type: spearman_dot
value: 0.45184703338997106
name: Spearman Dot
- type: pearson_max
value: 0.6004811664372558
name: Pearson Max
- type: spearman_max
value: 0.4540997609838606
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: validation
type: validation
metrics:
- type: pearson_cosine
value: 0.9428978189133087
name: Pearson Cosine
- type: spearman_cosine
value: 0.6568158263615053
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9703142955814245
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6535524581165605
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9704178537982603
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6535890675794356
name: Spearman Euclidean
- type: pearson_dot
value: 0.9428978176196957
name: Pearson Dot
- type: spearman_dot
value: 0.6535945302568601
name: Spearman Dot
- type: pearson_max
value: 0.9704178537982603
name: Pearson Max
- type: spearman_max
value: 0.6568158263615053
name: Spearman Max
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jarredparrett/fine-tuned-address-model-v0")
# Run inference
sentences = [
'612 Madison # 2',
'612 Madison Apt 2',
'421 Jersey # 1',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.6005 |
| spearman_cosine | 0.4541 |
| pearson_manhattan | 0.4982 |
| spearman_manhattan | 0.4519 |
| pearson_euclidean | 0.4973 |
| spearman_euclidean | 0.4517 |
| pearson_dot | 0.6005 |
| spearman_dot | 0.4518 |
| pearson_max | 0.6005 |
| **spearman_max** | **0.4541** |
#### Semantic Similarity
* Dataset: `validation`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.9429 |
| spearman_cosine | 0.6568 |
| pearson_manhattan | 0.9703 |
| spearman_manhattan | 0.6536 |
| pearson_euclidean | 0.9704 |
| spearman_euclidean | 0.6536 |
| pearson_dot | 0.9429 |
| spearman_dot | 0.6536 |
| pearson_max | 0.9704 |
| **spearman_max** | **0.6568** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 17,500 training samples
* Columns: sentence_0
, sentence_1
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details |
32 Cinder #17
| 32 Cinder Unit 17
| 1
|
| 85 Allen Apt 2R
| 85 Allen #2R
| 1
|
| 138 - 162 Martin Luther King Jr Apt 1807
| 138 - 162 Martin Luther King Jr Apt 1807
| 1
|
* Loss: [ContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
```json
{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters