--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-fake-news results: [] datasets: - GonzaloA/fake_news language: - en --- # distilbert-base-uncased-finetuned-fake-news This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on a [fake news dataset](https://huggingface.co/datasets/GonzaloA/fake_news). It achieves the following results on the evaluation set: - Loss: 0.0403 - Accuracy: 0.9892 - F1: 0.9892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.03 | 1.0 | 762 | 0.0364 | 0.9880 | 0.9881 | | 0.0121 | 2.0 | 1524 | 0.0403 | 0.9892 | 0.9892 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1