{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efb6b39c600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688244414374638066, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJorvjxxPTC56Ix6OrZ6gTZshnS7dvuXuQAAgD8AAIA/AKrAPfYsdrq6Cma7h7iQOGOuYrt34745AACAPwAAgD8AkEQ9jzJiutqBWbhcm1Gz6XcnO6O2fzcAAIA/AACAPzOjKD2uxZ+6drqTu66HsTgiu0e6PhwHOgAAgD8AAIA/IMQzvjQNNT8D/wo9pjMJvpBoj70UEcw9AAAAAAAAAADNMjg9cT1ZOLoRB7wm8ky23+19u0/TujUAAIA/AACAP7OlDz6XQAs/hebhvW5LUr6ZnVK9Jrw5PQAAAAAAAAAAmmrpvK7FtLob6B86zQA4NKaEBjpTgja5AACAPwAAgD+aibM7SLuGuqqjmjogtZA1y5QxujYntLkAAIA/AACAPwCsMLwp+Aa6ETdCvKvBGLVDDDA5CmGFNAAAgD8AAIA/zS7LPFLws7kuqla6hFfgNMEeuzrbLHw5AACAPwAAgD+zdym9w6lSuiC8mTpcAKk1k1/TuYMcrrkAAIA/AACAPwAU+rt7PqG6mPUpu7GLrrbCYFK6uL9DOgAAgD8AAIA/xiw3PpB0lj5QvF871K6EvrK3YD0onGk9AAAAAAAAAAAz5Qi9eO2sPdvLlT2XLDC+mtFGvKh/xbsAAAAAAAAAAAAAprl7EIq6FOw5ujOiKbQEqA+7G7ZVOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGNE0CaJAMWMAWyUTegDjAF0lEdAligoJJGvwHV9lChoBkdAYyaeIVM232gHTegDaAhHQJYtIdLg4wR1fZQoaAZHQGNFuC5EtuloB03oA2gIR0CWMEQSi/O/dX2UKGgGR0BhoBjOLR8daAdN6ANoCEdAljLUXP7emHV9lChoBkdAXYqntOVPe2gHTegDaAhHQJY2weXAuZl1fZQoaAZHQGS5lRxcVxloB03oA2gIR0CWNsUD+zdDdX2UKGgGR0BhLYtrbg0kaAdN6ANoCEdAljqE8/2TPnV9lChoBkdAZP+OU+s5n2gHTegDaAhHQJY8wmmce8x1fZQoaAZHQGVJtvwVj7RoB03oA2gIR0CWP3+85CF9dX2UKGgGR0BgYgIOYplSaAdN6ANoCEdAlkBHMpw0f3V9lChoBkdAYF/8JD3M6mgHTegDaAhHQJZHQnkT6BR1fZQoaAZHQF1eHwgDA8BoB03oA2gIR0CWSYxZMcp9dX2UKGgGR0Bj5wgow22oaAdN6ANoCEdAllEyWiUPhHV9lChoBkdAZA//7zkIX2gHTegDaAhHQJZR8OVgQYl1fZQoaAZHQEd6ShakhzNoB00PAWgIR0CWVvUuL740dX2UKGgGR0BeoK+BYmsvaAdN6ANoCEdAllxLQ5WBBnV9lChoBkdAYkd2Xb/OuGgHTegDaAhHQJZfjiXIEKV1fZQoaAZHQGJAXNs3yZtoB03oA2gIR0CWgCgF5fMOdX2UKGgGR0Bj3cLYwqRVaAdN6ANoCEdAloUVW8yvcXV9lChoBkdAYlPJ6IFeOWgHTegDaAhHQJaIVI/Z/Td1fZQoaAZHQGL5PDP4VRFoB03oA2gIR0CWiqFB6a9cdX2UKGgGR0BgQnxMFlkIaAdN6ANoCEdAlo27N8ma6XV9lChoBkdAY5LhVlwtKGgHTegDaAhHQJaNvaK1og51fZQoaAZHQGBkK508vEloB03oA2gIR0CWkHl5GBnSdX2UKGgGR0Bh14fCAMDwaAdN6ANoCEdAlpIZgXuVo3V9lChoBkdAXhTBk7Omi2gHTegDaAhHQJaUD84xUNt1fZQoaAZHQGMVcFQl8gJoB03oA2gIR0CWlJ/I8yN5dX2UKGgGR0BdzfUz9CNTaAdN6ANoCEdAlpzZB1LamHV9lChoBkdARcmhVU+9rWgHS+ZoCEdAlp7WLcbiqHV9lChoBkdAZB+hmGucMGgHTegDaAhHQJalJCE6DGt1fZQoaAZHQF5iVvddmg9oB03oA2gIR0CWpgV7x/d7dX2UKGgGR0Bj+r5bhWHUaAdN6ANoCEdAlq1lrdnCf3V9lChoBkdAYkK3HaN+9mgHTegDaAhHQJa1H4gzP8h1fZQoaAZHQGODSvTw2EVoB03oA2gIR0CWuXDlHSWrdX2UKGgGR0BfyhXjlxOtaAdN6ANoCEdAltVOT7l7t3V9lChoBkdAWTcYQ8OkL2gHTegDaAhHQJbaOh24d6t1fZQoaAZHQGFdgckt29toB03oA2gIR0CW3VIrvsqsdX2UKGgGR0Bgz/BSDRMOaAdN6ANoCEdAlt+dV7x/eHV9lChoBkdAYcGq0+kgwGgHTegDaAhHQJbjMDGLk0d1fZQoaAZHQGCeAR02caxoB03oA2gIR0CW4zQmeDnOdX2UKGgGR0Bgzh3iaRZEaAdN6ANoCEdAlubt/WlMy3V9lChoBkdAWZlspG4I8mgHTegDaAhHQJbsTytmthd1fZQoaAZHQGHacQI2OyVoB03oA2gIR0CW7SSG8EmqdX2UKGgGR0BgTh9G7SRbaAdN6ANoCEdAlvhkE1VHWnV9lChoBkdAYTxHxSYPXmgHTegDaAhHQJb6pAbADaJ1fZQoaAZHQF8kGYKIBR1oB03oA2gIR0CXAY2FFlTWdX2UKGgGR0BjcGUW2w3YaAdN6ANoCEdAlwJ9znzQNXV9lChoBkdAZF37F85S32gHTegDaAhHQJcJRAIIF/x1fZQoaAZHQFnkrXlKbrloB03oA2gIR0CXD8wnYxtYdX2UKGgGR0Blz1YQrc0taAdN6ANoCEdAlxO+doWYW3V9lChoBkdAKq0S7GvOhWgHTQkBaAhHQJcWL212JSB1fZQoaAZHQGKx5U96kZdoB03oA2gIR0CXNoWKMvRJdX2UKGgGR0BXfdbTtsvaaAdN6ANoCEdAlzwomois4nV9lChoBkdAYXrASnLq2WgHTegDaAhHQJc/qL876pJ1fZQoaAZHQFoTLwWnCO5oB03oA2gIR0CXQjrzoUzsdX2UKGgGR0BbfRkVeruIaAdN6ANoCEdAl0V9diUgS3V9lChoBkdAYn5dadMCcWgHTegDaAhHQJdFfvF3pwF1fZQoaAZHQGGslLFn7HhoB03oA2gIR0CXSIvUSZjQdX2UKGgGR0BfIK86FM7EaAdN6ANoCEdAl0xvYWcjJXV9lChoBkdAX+7pwCKaX2gHTegDaAhHQJdNBhvze411fZQoaAZHQGWGuLaVUuNoB03oA2gIR0CXVfZezD4ydX2UKGgGR0BjyC0Sh8IBaAdN6ANoCEdAl1jY1cdHUnV9lChoBkdAZGYtBfKISGgHTegDaAhHQJdjGfI0ZWJ1fZQoaAZHQE/CBkqc3ERoB00xAWgIR0CXZC0dBBzFdX2UKGgGR0BiwxTGYKIBaAdN6ANoCEdAl2oIuoP07XV9lChoBkdAY8vHCoCMgmgHTegDaAhHQJdvtZs9B8h1fZQoaAZHQGX4jrAxi5NoB03oA2gIR0CXcx6reZXudX2UKGgGR0BhgXQ2MsH0aAdN6ANoCEdAl3UsFyJbdXV9lChoBkdAX0BzV+Zw42gHTegDaAhHQJeOrP0I1Lt1fZQoaAZHQGSDX3QD3dtoB03oA2gIR0CXlQxXGOuJdX2UKGgGR0BjKQXO4XoDaAdN6ANoCEdAl5lIfCAMD3V9lChoBkdAYIWdcSoOx2gHTegDaAhHQJeci3pfQa91fZQoaAZHQGVWOeSSvDBoB03oA2gIR0CXoMbyYoiLdX2UKGgGR0BgnlZ9uxbCaAdN6ANoCEdAl6DJtm+TNnV9lChoBkdAYOCdat9x62gHTegDaAhHQJej6kXUH6d1fZQoaAZHQFmD1EE1VHZoB03oA2gIR0CXp+5QxesxdX2UKGgGR0Bex+p4rz5HaAdN6ANoCEdAl7KVxOtW/HV9lChoBkdAYs1Ux20Re2gHTegDaAhHQJe07yQPqcF1fZQoaAZHQGUxZGax5cFoB03oA2gIR0CXvPvG6wt8dX2UKGgGR0BgPKIWP91maAdN6ANoCEdAl73PYFqzq3V9lChoBkdAY/Gox59mYmgHTegDaAhHQJfDUJUo8ZF1fZQoaAZHQGBZKebutwJoB03oA2gIR0CXyVDSPU8WdX2UKGgGR0BhIxqVQhwEaAdN6ANoCEdAl84L5IpYtHV9lChoBkdAXGYIOYplSWgHTegDaAhHQJfQxhoduHh1fZQoaAZHQGByhQ3xWktoB03oA2gIR0CX7bij+JgtdX2UKGgGR0BhC6T+vQnhaAdN6ANoCEdAl/KxuwX67HV9lChoBkdAYWD54W1twmgHTegDaAhHQJf2DDVH4Gl1fZQoaAZHQGMTzot+TeRoB03oA2gIR0CX+JuPV/c4dX2UKGgGR0BiUesxO+IuaAdN6ANoCEdAl/uYcNpdr3V9lChoBkdAZdSJJoTPB2gHTegDaAhHQJf7mSntOVR1fZQoaAZHQF2kKzAvcrRoB03oA2gIR0CX/oyMkyDadX2UKGgGR0Bh10FY+0PZaAdN6ANoCEdAmAJgT7EYO3V9lChoBkdAYxVs7+1jRWgHTegDaAhHQJgQbqNZNfx1fZQoaAZHQGHleuvECNloB03oA2gIR0CYE45v99+gdX2UKGgGR0BkCM2eg+QmaAdN6ANoCEdAmBtrPt2LYXV9lChoBkdAYoUwV0tAcGgHTegDaAhHQJgcFU6xPft1fZQoaAZHQGMhkQoTfzloB03oA2gIR0CYIFmkWRA9dX2UKGgGR0Bi05nxri2laAdN6ANoCEdAmCVD0cwQDnV9lChoBkdAYHwgYgq3E2gHTegDaAhHQJgoLuc+aBt1fZQoaAZHQGGZJ2t+1BtoB03oA2gIR0CYKe6bONYKdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}