{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f202e2ae800>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684154831394208090, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACfaHD+tmUa+c8vrPk9exT9Yvnk+zFCfP/S+4z7iXqS/sAGVP1e6Pj4Xl+g/lxMkP1hWyb91d625/EWCviZvXsAYSve+gkYMv7+clj9YPDy+xCkJv1ASwD8roRS/o6YVwD3FSj8jGirAbC+7PoSNoL+nKyc+Y7j/PYv78j6PbZk/yaCLPXDonTqXlAE/wG9qv2Gcej8Mk+u/eSl6PzcwGL6PRLi/q65ev+0yn74pCK+/AMlrvYgr37+/FY8/4sm/u0brN79b4dm/1aknvty7yD89xUo/IxoqwHgOL8CEjaC/+pMZP6S9gT/XGZg9ISCeP3ZUKz9o04O/uNYJPuqMeb4Ov/A+eF0Yv/NwND6fKH+/HjGSPtySJED4zbe9SyQMQI8n4z98Y5RAJnmjvvkCf782bpi/HdFoPDf6/D5GRQs/+JmhvyKjwD5sL7s+SBhMPwKGoz3pMrU9MkT0PnTMWz+kXmM/6D6EvIypDz8QvKG/CWSCP9QJlL6eZng/eHLWv1C1xr8g9d09aDtvPhqtNT547uE+4bUev/7Mkz+VZdy+/4A1v/yO2j55ySe//TTtP/iZob8jGirAbC+7PoSNoL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABzBb+1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEMTEPAAAAACiXd6/AAAAAP6HmLwAAAAA1ujePwAAAAAylKU9AAAAAEOV+D8AAAAAkg3CPQAAAAA3yv2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApDo3tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAFJkj0AAAAAHM3zvwAAAACgQfI9AAAAAHPb6z8AAAAA1eCsvQAAAACnHfY/AAAAAGqDpT0AAAAAedXgvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCGmrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICCnco9AAAAAFPP/r8AAAAAzhsrvAAAAAD9ePY/AAAAAMPsBr0AAAAAn8DwPwAAAAA5GnE9AAAAAH3B978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8hxE3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAppcQvgAAAABjfvy/AAAAAG+7xLwAAAAAwyDhPwAAAAA/ogA+AAAAAGII9z8AAAAAopgJvgAAAADS4va/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ/nhu+AVfyMAWyUTegDjAF0lEdApLaEy8BdU3V9lChoBkdAndmW+Cbtq2gHTegDaAhHQKS6EGPgeil1fZQoaAZHQKC4/iOvMbFoB03oA2gIR0CkumOhCdBjdX2UKGgGR0CetfY0EX+EaAdN6ANoCEdApL3/bO/tY3V9lChoBkdAoMCGLYPGyWgHTegDaAhHQKTB4KO1fE51fZQoaAZHQKEv5uTA31loB03oA2gIR0CkxucLBsQ/dX2UKGgGR0CewXocJdB0aAdN6ANoCEdApMdBufmLcnV9lChoBkdAocQ0P+XJHWgHTegDaAhHQKTKcTewcHZ1fZQoaAZHQKHDEhxo7FNoB03oA2gIR0CkzPhFEy+IdX2UKGgGR0ChvT5telbeaAdN6ANoCEdApNB2B8QZoHV9lChoBkdAoiWJ6dDpkmgHTegDaAhHQKTQzlp48lp1fZQoaAZHQKLev4ptrKxoB03oA2gIR0Ck1B4L9deIdX2UKGgGR0Cg1aJV0cOtaAdN6ANoCEdApNanJLdvbXV9lChoBkdAotUG3OObRWgHTegDaAhHQKTaoQKa5PN1fZQoaAZHQKEDY0WuX/poB03oA2gIR0Ck2yjD0lJIdX2UKGgGR0ChwJf7rLQpaAdN6ANoCEdApOCH5FgDzXV9lChoBkdAolA6Lyc0+GgHTegDaAhHQKTjc34Kx9p1fZQoaAZHQKGj/IuoP09oB03oA2gIR0Ck5vjx0+1SdX2UKGgGR0Cg/HH4wh4daAdN6ANoCEdApOdL3Zf2K3V9lChoBkdAn0kakyk9EGgHTegDaAhHQKTqhmEoOQR1fZQoaAZHQJ5kEILPUrloB03oA2gIR0Ck7PqXnhbXdX2UKGgGR0CdQZdJaq0daAdN6ANoCEdApPBvDcdo4HV9lChoBkdAoSs+JWNm2GgHTegDaAhHQKTwxsqJ/G51fZQoaAZHQKFcB7BwdbRoB03oA2gIR0Ck9AbnHNordX2UKGgGR0Ch5Qd5IH1OaAdN6ANoCEdApPcTwe/5+HV9lChoBkdAol+4/FBIF2gHTegDaAhHQKT8/1uivgZ1fZQoaAZHQJzEXGtITXdoB03oA2gIR0Ck/Z9RrJr+dX2UKGgGR0ChvG+jdpIuaAdN6ANoCEdApQDeEug6EXV9lChoBkdAoZdOCK77K2gHTegDaAhHQKUDaYKIBR11fZQoaAZHQKFWDZmqYJFoB03oA2gIR0ClBur6ciGGdX2UKGgGR0Cgee7+tKZlaAdN6ANoCEdApQdIFHJ9zHV9lChoBkdAogwa7K7qZGgHTegDaAhHQKUKW4aP0Zp1fZQoaAZHQKEc9QGfPHFoB03oA2gIR0ClDP81Gb1AdX2UKGgGR0CgIrsWweNlaAdN6ANoCEdApRCqoddVvXV9lChoBkdAokAEjiXIEWgHTegDaAhHQKURBPWQOnV1fZQoaAZHQJz4+lTFVDNoB03oA2gIR0ClFStzr/sFdX2UKGgGR0CiO5GJN0vHaAdN6ANoCEdApRmjRUm2LHV9lChoBkdAoXnISvkilmgHTegDaAhHQKUdaglF+d91fZQoaAZHQKJkH82Jiy9oB03oA2gIR0ClHcepn6EbdX2UKGgGR0CiPqBVlwtKaAdN6ANoCEdApSECcCo0h3V9lChoBkdAon23+2mYSmgHTegDaAhHQKUjpGx2SuB1fZQoaAZHQKMAL4JNTLpoB03oA2gIR0ClJ1U9yLhrdX2UKGgGR0Ciszf2kBS2aAdN6ANoCEdApSexNIsiCHV9lChoBkdAoqfBZlnRLWgHTegDaAhHQKUq5cJtzjp1fZQoaAZHQKOT9lcyFf1oB03oA2gIR0ClLYiBGx2TdX2UKGgGR0Cewhjv/io9aAdN6ANoCEdApTLKkAPuonV9lChoBkdAosUbx7RfGGgHTegDaAhHQKUzdZRsMy91fZQoaAZHQJ78WClJpWVoB03oA2gIR0ClOAAVO9FndX2UKGgGR0CgICFFDv3KaAdN6ANoCEdApTqEZm7J4nV9lChoBkdAoG6nCEYfn2gHTegDaAhHQKU+IziS7oV1fZQoaAZHQJ2ta38XN1RoB03oA2gIR0ClPnoHkcS5dX2UKGgGR0Cf0Ss2NvOyaAdN6ANoCEdApUGbcGkeqHV9lChoBkdAmjsZL/S6UmgHTegDaAhHQKVEOULUkOZ1fZQoaAZHQJ9yRZyMkyFoB03oA2gIR0ClR9e4TbnHdX2UKGgGR0CV8yaNuLrHaAdN6ANoCEdApUg04BFNL3V9lChoBkdAmIwrVnVXm2gHTegDaAhHQKVL3y2hIvt1fZQoaAZHQJ5URr1uivhoB03oA2gIR0ClUBf6O5rhdX2UKGgGR0CQHZUJOWSmaAdN6ANoCEdApVTZZ6lchXV9lChoBkdAmRryrksBhmgHTegDaAhHQKVVK/FBIFx1fZQoaAZHQJErb336AOJoB03oA2gIR0ClWGZnctXgdX2UKGgGR0CSlQixVyWBaAdN6ANoCEdApVr+ff4yoHV9lChoBkdAoMTrm8ujAWgHTegDaAhHQKVemXOW0JF1fZQoaAZHQJw/QNpdrwhoB03oA2gIR0ClXvgAQxvfdX2UKGgGR0CgAnUFB6a9aAdN6ANoCEdApWJCpcX3xnV9lChoBkdAokiZmGucMGgHTegDaAhHQKVk+MOwxFl1fZQoaAZHQKFFiuIyj59oB03oA2gIR0ClaYBBiTdMdX2UKGgGR0Cg5JsMAmzCaAdN6ANoCEdApWoJIQOFxnV9lChoBkdAodiOF+NLlGgHTegDaAhHQKVvZOnEVFh1fZQoaAZHQKHaJVT72tdoB03oA2gIR0Clcfst03fidX2UKGgGR0ChN0+qrBCVaAdN6ANoCEdApXV/+VC5VnV9lChoBkdAonoCfjCHh2gHTegDaAhHQKV14Fh5Pdl1fZQoaAZHQKNG9gkTpPhoB03oA2gIR0CleQjABT4tdX2UKGgGR0ChXgnWSU1RaAdN6ANoCEdApXuY/A0sOHV9lChoBkdAoXJAkVvddmgHTegDaAhHQKV/Q814xDd1fZQoaAZHQKKGAYdhiLFoB03oA2gIR0Clf5zqB3A3dX2UKGgGR0ChkIUm2LHdaAdN6ANoCEdApYKz/ZM+NnV9lChoBkdAouL9UuL742gHTegDaAhHQKWGfXQtz0Z1fZQoaAZHQKKC2RB/qgRoB03oA2gIR0CljAQX668QdX2UKGgGR0CgrcTUZvUCaAdN6ANoCEdApYxhb2USqXV9lChoBkdAohEkKzAvc2gHTegDaAhHQKWPd7OVxCJ1fZQoaAZHQKG1dAAyVOdoB03oA2gIR0ClkhzUy57PdX2UKGgGR0Cg1sfT1CgLaAdN6ANoCEdApZXACdSVGHV9lChoBkdAonkKfUWl/GgHTegDaAhHQKWWGJDVpbl1fZQoaAZHQKKDdd69kBloB03oA2gIR0ClmRrzGxUvdX2UKGgGR0CfHoRLK3d9aAdN6ANoCEdApZvEtCiRGXV9lChoBkdAokWMH4XXRWgHTegDaAhHQKWfs2rn1Wd1fZQoaAZHQKJhLRR/EwZoB03oA2gIR0CloC2bPQfIdX2UKGgGR0ChgE8rI5o5aAdN6ANoCEdApaU//T9bYHV9lChoBkdAokyXC66J7GgHTegDaAhHQKWorUBnzxx1fZQoaAZHQKBKnEUCaJBoB03oA2gIR0ClrDxOLzf8dX2UKGgGR0CgisWZy+6AaAdN6ANoCEdApayR59mYjXV9lChoBkdAnlpNJWeYlmgHTegDaAhHQKWvyoOQQtl1fZQoaAZHQKAYTfAsTWZoB03oA2gIR0ClslGh/RVqdX2UKGgGR0CbFMFa0QbuaAdN6ANoCEdApbXaxHG0eHV9lChoBkdAjFp0nw5NoWgHTegDaAhHQKW2LhttQ9B1fZQoaAZHQKIvG4DLbHpoB03oA2gIR0CluUe5Fw1jdX2UKGgGR0CicLZ8Sf16aAdN6ANoCEdApbwZ0ZFXrHV9lChoBkdAolwqQJXyRWgHTegDaAhHQKXButkFwDN1fZQoaAZHQKK0Dv/BFd9oB03oA2gIR0Clwl5NwiqydX2UKGgGR0ChTurWRRuTaAdN6ANoCEdApcXtRYRuj3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}