# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0 # LICENSE is in incl_licenses directory. import torch.nn as nn from torch.nn import functional as F from BigVGAN.alias_free_activation.torch.filter import LowPassFilter1d from BigVGAN.alias_free_activation.torch.filter import kaiser_sinc_filter1d class UpSample1d(nn.Module): def __init__(self, ratio=2, kernel_size=None): super().__init__() self.ratio = ratio self.kernel_size = ( int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size ) self.stride = ratio self.pad = self.kernel_size // ratio - 1 self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2 self.pad_right = ( self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2 ) filter = kaiser_sinc_filter1d( cutoff=0.5 / ratio, half_width=0.6 / ratio, kernel_size=self.kernel_size ) self.register_buffer("filter", filter) # x: [B, C, T] def forward(self, x): _, C, _ = x.shape x = F.pad(x, (self.pad, self.pad), mode="replicate") x = self.ratio * F.conv_transpose1d( x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C ) x = x[..., self.pad_left : -self.pad_right] return x class DownSample1d(nn.Module): def __init__(self, ratio=2, kernel_size=None): super().__init__() self.ratio = ratio self.kernel_size = ( int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size ) self.lowpass = LowPassFilter1d( cutoff=0.5 / ratio, half_width=0.6 / ratio, stride=ratio, kernel_size=self.kernel_size, ) def forward(self, x): xx = self.lowpass(x) return xx