# Copyright (c) 2024 NVIDIA CORPORATION. # Licensed under the MIT license. import torch import torch.nn as nn from BigVGAN.alias_free_activation.torch.resample import UpSample1d, DownSample1d # load fused CUDA kernel: this enables importing anti_alias_activation_cuda from BigVGAN.alias_free_activation.cuda import load anti_alias_activation_cuda = load.load() class FusedAntiAliasActivation(torch.autograd.Function): """ Assumes filter size 12, replication padding on upsampling/downsampling, and logscale alpha/beta parameters as inputs. The hyperparameters are hard-coded in the kernel to maximize speed. NOTE: The fused kenrel is incorrect for Activation1d with different hyperparameters. """ @staticmethod def forward(ctx, inputs, up_ftr, down_ftr, alpha, beta): activation_results = anti_alias_activation_cuda.forward( inputs, up_ftr, down_ftr, alpha, beta ) return activation_results @staticmethod def backward(ctx, output_grads): raise NotImplementedError return output_grads, None, None class Activation1d(nn.Module): def __init__( self, activation, up_ratio: int = 2, down_ratio: int = 2, up_kernel_size: int = 12, down_kernel_size: int = 12, fused: bool = True, ): super().__init__() self.up_ratio = up_ratio self.down_ratio = down_ratio self.act = activation self.upsample = UpSample1d(up_ratio, up_kernel_size) self.downsample = DownSample1d(down_ratio, down_kernel_size) self.fused = fused # Whether to use fused CUDA kernel or not def forward(self, x): if not self.fused: x = self.upsample(x) x = self.act(x) x = self.downsample(x) return x else: if self.act.__class__.__name__ == "Snake": beta = self.act.alpha.data # Snake uses same params for alpha and beta else: beta = ( self.act.beta.data ) # Snakebeta uses different params for alpha and beta alpha = self.act.alpha.data if ( not self.act.alpha_logscale ): # Exp baked into cuda kernel, cancel it out with a log alpha = torch.log(alpha) beta = torch.log(beta) x = FusedAntiAliasActivation.apply( x, self.upsample.filter, self.downsample.lowpass.filter, alpha, beta ) return x