File size: 14,841 Bytes
96e64e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
# Copyright (c) 2024 NVIDIA CORPORATION.
# Licensed under the MIT license.
import spaces
import gradio as gr
import pandas as pd
import torch
import os
import sys
# to import modules from parent_dir
parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(parent_dir)
from meldataset import get_mel_spectrogram, MAX_WAV_VALUE
from bigvgan import BigVGAN
import librosa
import numpy as np
from utils import plot_spectrogram
import PIL
if torch.cuda.is_available():
device = torch.device("cuda")
torch.backends.cudnn.benchmark = False
print(f"using GPU")
else:
device = torch.device("cpu")
print(f"using CPU")
def inference_gradio(input, model_choice): # Input is audio waveform in [T, channel]
sr, audio = input # Unpack input to sampling rate and audio itself
audio = np.transpose(audio) # Transpose to [channel, T] for librosa
audio = audio / MAX_WAV_VALUE # Convert int16 to float range used by BigVGAN
model = dict_model[model_choice]
if sr != model.h.sampling_rate: # Convert audio to model's sampling rate
audio = librosa.resample(audio, orig_sr=sr, target_sr=model.h.sampling_rate)
if len(audio.shape) == 2: # Stereo
audio = librosa.to_mono(audio) # Convert to mono if stereo
audio = librosa.util.normalize(audio) * 0.95
output, spec_gen = inference_model(
audio, model
) # Output is generated audio in ndarray, int16
spec_plot_gen = plot_spectrogram(spec_gen)
output_audio = (model.h.sampling_rate, output) # Tuple for gr.Audio output
buffer = spec_plot_gen.canvas.buffer_rgba()
output_image = PIL.Image.frombuffer(
"RGBA", spec_plot_gen.canvas.get_width_height(), buffer, "raw", "RGBA", 0, 1
)
return output_audio, output_image
@spaces.GPU(duration=120)
def inference_model(audio_input, model):
# Load model to device
model.to(device)
with torch.inference_mode():
wav = torch.FloatTensor(audio_input)
# Compute mel spectrogram from the ground truth audio
spec_gt = get_mel_spectrogram(wav.unsqueeze(0), model.h).to(device)
y_g_hat = model(spec_gt)
audio_gen = y_g_hat.squeeze().cpu()
spec_gen = get_mel_spectrogram(audio_gen.unsqueeze(0), model.h)
audio_gen = audio_gen.numpy() # [T], float [-1, 1]
audio_gen = (audio_gen * MAX_WAV_VALUE).astype("int16") # [T], int16
spec_gen = spec_gen.squeeze().numpy() # [C, T_frame]
# Unload to CPU
model.to("cpu")
# Delete GPU tensor
del spec_gt, y_g_hat
return audio_gen, spec_gen
css = """
a {
color: inherit;
text-decoration: underline;
}
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: #000000;
background: #000000;
}
input[type='range'] {
accent-color: #000000;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 730px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-btn {
font-size: .7rem !important;
line-height: 19px;
margin-top: 12px;
margin-bottom: 12px;
padding: 2px 8px;
border-radius: 14px !important;
}
#advanced-options {
margin-bottom: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.acknowledgments h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
#container-advanced-btns{
display: flex;
flex-wrap: wrap;
justify-content: space-between;
align-items: center;
}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
margin-top: 10px;
margin-left: auto;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
.gr-form{
flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
}
#prompt-container{
gap: 0;
}
#generated_id{
min-height: 700px
}
#setting_id{
margin-bottom: 12px;
text-align: center;
font-weight: 900;
}
"""
# Script for loading the models
LIST_MODEL_ID = [
"bigvgan_24khz_100band",
"bigvgan_base_24khz_100band",
"bigvgan_22khz_80band",
"bigvgan_base_22khz_80band",
"bigvgan_v2_22khz_80band_256x",
"bigvgan_v2_22khz_80band_fmax8k_256x",
"bigvgan_v2_24khz_100band_256x",
"bigvgan_v2_44khz_128band_256x",
"bigvgan_v2_44khz_128band_512x",
]
dict_model = {}
dict_config = {}
for model_name in LIST_MODEL_ID:
generator = BigVGAN.from_pretrained("nvidia/" + model_name)
generator.remove_weight_norm()
generator.eval()
dict_model[model_name] = generator
dict_config[model_name] = generator.h
# Script for Gradio UI
iface = gr.Blocks(css=css, title="BigVGAN - Demo")
with iface:
gr.HTML(
"""
<div style="text-align: center; max-width: 900px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.5rem;
"
>
<h1 style="font-weight: 700; margin-bottom: 7px; line-height: normal;">
BigVGAN: A Universal Neural Vocoder with Large-Scale Training
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 125%">
<a href="https://arxiv.org/abs/2206.04658">[Paper]</a> <a href="https://github.com/NVIDIA/BigVGAN">[Code]</a> <a href="https://bigvgan-demo.github.io/">[Demo]</a> <a href="https://research.nvidia.com/labs/adlr/projects/bigvgan/">[Project page]</a>
</p>
</div>
"""
)
gr.HTML(
"""
<div>
<h3>News</h3>
<p>[Jul 2024] We release BigVGAN-v2 along with pretrained checkpoints. Below are the highlights:</p>
<ul>
<li>Custom CUDA kernel for inference: we provide a fused upsampling + activation kernel written in CUDA for accelerated inference speed. Our test shows 1.5 - 3x faster speed on a single A100 GPU.</li>
<li>Improved discriminator and loss: BigVGAN-v2 is trained using a <a href="https://arxiv.org/abs/2311.14957" target="_blank">multi-scale sub-band CQT discriminator</a> and a <a href="https://arxiv.org/abs/2306.06546" target="_blank">multi-scale mel spectrogram loss</a>.</li>
<li>Larger training data: BigVGAN-v2 is trained using datasets containing diverse audio types, including speech in multiple languages, environmental sounds, and instruments.</li>
<li>We provide pretrained checkpoints of BigVGAN-v2 using diverse audio configurations, supporting up to 44 kHz sampling rate and 512x upsampling ratio. See the table below for the link.</li>
</ul>
</div>
"""
)
gr.HTML(
"""
<div>
<h3>Model Overview</h3>
BigVGAN is a universal neural vocoder model that generates audio waveforms using mel spectrogram as inputs.
<center><img src="https://user-images.githubusercontent.com/15963413/218609148-881e39df-33af-4af9-ab95-1427c4ebf062.png" width="800" style="margin-top: 20px; border-radius: 15px;"></center>
</div>
"""
)
with gr.Accordion("Input"):
model_choice = gr.Dropdown(
label="Select the model to use",
info="The default model is bigvgan_v2_24khz_100band_256x",
value="bigvgan_v2_24khz_100band_256x",
choices=[m for m in LIST_MODEL_ID],
interactive=True,
)
audio_input = gr.Audio(
label="Input Audio", elem_id="input-audio", interactive=True
)
button = gr.Button("Submit")
with gr.Accordion("Output"):
with gr.Column():
output_audio = gr.Audio(label="Output Audio", elem_id="output-audio")
output_image = gr.Image(
label="Output Mel Spectrogram", elem_id="output-image-gen"
)
button.click(
inference_gradio,
inputs=[audio_input, model_choice],
outputs=[output_audio, output_image],
concurrency_limit=10,
)
gr.Examples(
[
[
os.path.join(os.path.dirname(__file__), "examples/jensen_24k.wav"),
"bigvgan_v2_24khz_100band_256x",
],
[
os.path.join(os.path.dirname(__file__), "examples/libritts_24k.wav"),
"bigvgan_v2_24khz_100band_256x",
],
[
os.path.join(os.path.dirname(__file__), "examples/queen_24k.wav"),
"bigvgan_v2_24khz_100band_256x",
],
[
os.path.join(os.path.dirname(__file__), "examples/dance_24k.wav"),
"bigvgan_v2_24khz_100band_256x",
],
[
os.path.join(os.path.dirname(__file__), "examples/megalovania_24k.wav"),
"bigvgan_v2_24khz_100band_256x",
],
[
os.path.join(os.path.dirname(__file__), "examples/hifitts_44k.wav"),
"bigvgan_v2_44khz_128band_256x",
],
[
os.path.join(os.path.dirname(__file__), "examples/musdbhq_44k.wav"),
"bigvgan_v2_44khz_128band_256x",
],
[
os.path.join(os.path.dirname(__file__), "examples/musiccaps1_44k.wav"),
"bigvgan_v2_44khz_128band_256x",
],
[
os.path.join(os.path.dirname(__file__), "examples/musiccaps2_44k.wav"),
"bigvgan_v2_44khz_128band_256x",
],
],
fn=inference_gradio,
inputs=[audio_input, model_choice],
outputs=[output_audio, output_image],
)
# Define the data for the table
data = {
"Model Name": [
"bigvgan_v2_44khz_128band_512x",
"bigvgan_v2_44khz_128band_256x",
"bigvgan_v2_24khz_100band_256x",
"bigvgan_v2_22khz_80band_256x",
"bigvgan_v2_22khz_80band_fmax8k_256x",
"bigvgan_24khz_100band",
"bigvgan_base_24khz_100band",
"bigvgan_22khz_80band",
"bigvgan_base_22khz_80band",
],
"Sampling Rate": [
"44 kHz",
"44 kHz",
"24 kHz",
"22 kHz",
"22 kHz",
"24 kHz",
"24 kHz",
"22 kHz",
"22 kHz",
],
"Mel band": [128, 128, 100, 80, 80, 100, 100, 80, 80],
"fmax": [22050, 22050, 12000, 11025, 8000, 12000, 12000, 8000, 8000],
"Upsampling Ratio": [512, 256, 256, 256, 256, 256, 256, 256, 256],
"Parameters": [
"122M",
"112M",
"112M",
"112M",
"112M",
"112M",
"14M",
"112M",
"14M",
],
"Dataset": [
"Large-scale Compilation",
"Large-scale Compilation",
"Large-scale Compilation",
"Large-scale Compilation",
"Large-scale Compilation",
"LibriTTS",
"LibriTTS",
"LibriTTS + VCTK + LJSpeech",
"LibriTTS + VCTK + LJSpeech",
],
"Fine-Tuned": ["No", "No", "No", "No", "No", "No", "No", "No", "No"],
}
base_url = "https://huggingface.co/nvidia/"
df = pd.DataFrame(data)
df["Model Name"] = df["Model Name"].apply(
lambda x: f'<a href="{base_url}{x}">{x}</a>'
)
html_table = gr.HTML(
f"""
<div style="text-align: center;">
{df.to_html(index=False, escape=False, classes='border="1" cellspacing="0" cellpadding="5" style="margin-left: auto; margin-right: auto;')}
<p><b>NOTE: The v1 models are trained using speech audio datasets ONLY! (24kHz models: LibriTTS, 22kHz models: LibriTTS + VCTK + LJSpeech).</b></p>
</div>
"""
)
iface.queue()
iface.launch()
|