--- tags: - generated_from_trainer datasets: - nyu-mll/glue metrics: - accuracy model_index: - name: hackMIT-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metric: name: Accuracy type: accuracy value: 0.7970183486238532 --- # hackMIT-finetuned-sst2 This model is a fine-tuned version of [Blaine-Mason/hackMIT-finetuned-sst2](https://huggingface.co/Blaine-Mason/hackMIT-finetuned-sst2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.0046 - Accuracy: 0.7970 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.7339491016138283e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 23 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0652 | 1.0 | 1053 | 0.9837 | 0.7970 | | 0.0586 | 2.0 | 2106 | 0.9927 | 0.7959 | | 0.0549 | 3.0 | 3159 | 1.0046 | 0.7970 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3