--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - ml-superb-subset metrics: - wer model-index: - name: amh_finetune results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: ml-superb-subset type: ml-superb-subset config: amh split: test args: amh metrics: - name: Wer type: wer value: 100.0 --- # amh_finetune This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the ml-superb-subset dataset. It achieves the following results on the evaluation set: - Loss: 3.7471 - Wer: 100.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 25 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:----:|:---------------:|:-----:| | 17.1482 | 2.2222 | 10 | 9.2733 | 100.0 | | 4.0207 | 4.4444 | 20 | 3.9380 | 100.0 | | 5.0108 | 6.6667 | 30 | 4.5177 | 100.0 | | 5.4723 | 8.8889 | 40 | 4.1051 | 100.0 | | 3.9167 | 11.1111 | 50 | 3.8586 | 100.0 | | 3.8376 | 13.3333 | 60 | 3.8304 | 100.0 | | 3.8317 | 15.5556 | 70 | 3.8322 | 100.0 | | 3.8352 | 17.7778 | 80 | 3.8165 | 100.0 | | 3.8337 | 20.0 | 90 | 3.8249 | 100.0 | | 3.8231 | 22.2222 | 100 | 3.8129 | 100.0 | | 3.8169 | 24.4444 | 110 | 3.8217 | 100.0 | | 3.8195 | 26.6667 | 120 | 3.8120 | 100.0 | | 3.8186 | 28.8889 | 130 | 3.8160 | 100.0 | | 3.8271 | 31.1111 | 140 | 3.8150 | 100.0 | | 3.8273 | 33.3333 | 150 | 3.8134 | 100.0 | | 3.8186 | 35.5556 | 160 | 3.8138 | 100.0 | | 3.816 | 37.7778 | 170 | 3.8132 | 100.0 | | 3.817 | 40.0 | 180 | 3.8187 | 100.0 | | 3.8196 | 42.2222 | 190 | 3.8115 | 100.0 | | 3.8157 | 44.4444 | 200 | 3.8131 | 100.0 | | 3.814 | 46.6667 | 210 | 3.8158 | 100.0 | | 3.8198 | 48.8889 | 220 | 3.8073 | 100.0 | | 3.8169 | 51.1111 | 230 | 3.8036 | 100.0 | | 3.7913 | 53.3333 | 240 | 3.7904 | 100.0 | | 3.791 | 55.5556 | 250 | 3.7796 | 100.0 | | 3.765 | 57.7778 | 260 | 3.7673 | 100.0 | | 3.768 | 60.0 | 270 | 3.7672 | 100.0 | | 3.7594 | 62.2222 | 280 | 3.7594 | 100.0 | | 3.7488 | 64.4444 | 290 | 3.7601 | 100.0 | | 3.7506 | 66.6667 | 300 | 3.7583 | 100.0 | | 3.7408 | 68.8889 | 310 | 3.7580 | 100.0 | | 3.749 | 71.1111 | 320 | 3.7630 | 100.0 | | 3.7575 | 73.3333 | 330 | 3.7568 | 100.0 | | 3.7517 | 75.5556 | 340 | 3.7555 | 100.0 | | 3.758 | 77.7778 | 350 | 3.7536 | 100.0 | | 3.7491 | 80.0 | 360 | 3.7546 | 100.0 | | 3.7288 | 82.2222 | 370 | 3.7563 | 100.0 | | 3.7321 | 84.4444 | 380 | 3.7519 | 100.0 | | 3.7326 | 86.6667 | 390 | 3.7516 | 100.0 | | 3.7373 | 88.8889 | 400 | 3.7502 | 100.0 | | 3.7348 | 91.1111 | 410 | 3.7494 | 100.0 | | 3.7312 | 93.3333 | 420 | 3.7489 | 100.0 | | 3.732 | 95.5556 | 430 | 3.7477 | 100.0 | | 3.7431 | 97.7778 | 440 | 3.7489 | 100.0 | | 3.737 | 100.0 | 450 | 3.7474 | 100.0 | | 3.7364 | 102.2222 | 460 | 3.7479 | 100.0 | | 3.7265 | 104.4444 | 470 | 3.7478 | 100.0 | | 3.7339 | 106.6667 | 480 | 3.7471 | 100.0 | | 3.731 | 108.8889 | 490 | 3.7470 | 100.0 | | 3.736 | 111.1111 | 500 | 3.7471 | 100.0 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1