Commit
•
c5fe5b7
1
Parent(s):
0b2001e
Add model files
Browse files- README.md +124 -0
- config.json +76 -0
- preprocessor_config.json +8 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- trainer_state.json +240 -0
- training_args.bin +3 -0
- vocab.json +1 -0
README.md
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: eu
|
3 |
+
datasets:
|
4 |
+
- common_voice
|
5 |
+
tags:
|
6 |
+
- audio
|
7 |
+
- automatic-speech-recognition
|
8 |
+
- speech
|
9 |
+
- xlsr-fine-tuning-week
|
10 |
+
license: apache-2.0
|
11 |
+
model-index:
|
12 |
+
- name: XLSR Wav2Vec2 Basque Ivan G Torre
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Speech Recognition
|
16 |
+
type: automatic-speech-recognition
|
17 |
+
dataset:
|
18 |
+
name: Common Voice eu
|
19 |
+
type: common_voice
|
20 |
+
args: eu
|
21 |
+
metrics:
|
22 |
+
- name: Test WER
|
23 |
+
type: wer
|
24 |
+
value:
|
25 |
+
---
|
26 |
+
|
27 |
+
# Wav2Vec2-Large-XLSR-53-euskera
|
28 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Euskera using the [Common Voice](https://huggingface.co/datasets/common_voice).
|
29 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
30 |
+
|
31 |
+
## Usage
|
32 |
+
|
33 |
+
The model can be used directly (without a language model) as follows:
|
34 |
+
|
35 |
+
```python
|
36 |
+
import torch
|
37 |
+
import torchaudio
|
38 |
+
from datasets import load_dataset
|
39 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
40 |
+
|
41 |
+
test_dataset = load_dataset("common_voice", "eu", split="test[:2%]").
|
42 |
+
|
43 |
+
processor = Wav2Vec2Processor.from_pretrained("ivangtorre/wav2vec2-large-xlsr-53-basque")
|
44 |
+
model = Wav2Vec2ForCTC.from_pretrained("ivangtorre/wav2vec2-large-xlsr-53-basque")
|
45 |
+
|
46 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
47 |
+
|
48 |
+
# Preprocessing the datasets.
|
49 |
+
# We need to read the aduio files as arrays
|
50 |
+
def speech_file_to_array_fn(batch):
|
51 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
52 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
53 |
+
return batch
|
54 |
+
|
55 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
56 |
+
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
57 |
+
|
58 |
+
with torch.no_grad():
|
59 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
60 |
+
|
61 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
62 |
+
|
63 |
+
print("Prediction:", processor.batch_decode(predicted_ids))
|
64 |
+
print("Reference:", test_dataset["sentence"][:2])
|
65 |
+
```
|
66 |
+
|
67 |
+
|
68 |
+
## Evaluation
|
69 |
+
|
70 |
+
The model can be evaluated as follows on the Basque test data of Common Voice.
|
71 |
+
|
72 |
+
|
73 |
+
```python
|
74 |
+
import torch
|
75 |
+
import torchaudio
|
76 |
+
from datasets import load_dataset, load_metric
|
77 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
78 |
+
import re
|
79 |
+
|
80 |
+
test_dataset = load_dataset("common_voice", "eu", split="test")
|
81 |
+
wer = load_metric("wer")
|
82 |
+
|
83 |
+
processor = Wav2Vec2Processor.from_pretrained("ivangtorre/wav2vec2-large-xlsr-53-basque")
|
84 |
+
model = Wav2Vec2ForCTC.from_pretrained("ivangtorre/wav2vec2-large-xlsr-53-basque")
|
85 |
+
model.to("cuda")
|
86 |
+
|
87 |
+
chars_to_ignore_regex = 'default=[",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�"]'
|
88 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
89 |
+
|
90 |
+
# Preprocessing the datasets.
|
91 |
+
# We need to read the aduio files as arrays
|
92 |
+
def speech_file_to_array_fn(batch):
|
93 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
94 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
95 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
96 |
+
return batch
|
97 |
+
|
98 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
99 |
+
|
100 |
+
# Preprocessing the datasets.
|
101 |
+
# We need to read the aduio files as arrays
|
102 |
+
def evaluate(batch):
|
103 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
104 |
+
|
105 |
+
with torch.no_grad():
|
106 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
107 |
+
|
108 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
109 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
110 |
+
return batch
|
111 |
+
|
112 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
113 |
+
|
114 |
+
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
115 |
+
```
|
116 |
+
|
117 |
+
**Test Result**:
|
118 |
+
|
119 |
+
|
120 |
+
## Training
|
121 |
+
|
122 |
+
The Common Voice `train`, `validation` datasets were used for training.
|
123 |
+
|
124 |
+
The script used for training can be found ???
|
config.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
3 |
+
"activation_dropout": 0.07,
|
4 |
+
"apply_spec_augment": true,
|
5 |
+
"architectures": [
|
6 |
+
"Wav2Vec2ForCTC"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.2,
|
9 |
+
"bos_token_id": 1,
|
10 |
+
"conv_bias": true,
|
11 |
+
"conv_dim": [
|
12 |
+
512,
|
13 |
+
512,
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512,
|
17 |
+
512,
|
18 |
+
512
|
19 |
+
],
|
20 |
+
"conv_kernel": [
|
21 |
+
10,
|
22 |
+
3,
|
23 |
+
3,
|
24 |
+
3,
|
25 |
+
3,
|
26 |
+
2,
|
27 |
+
2
|
28 |
+
],
|
29 |
+
"conv_stride": [
|
30 |
+
5,
|
31 |
+
2,
|
32 |
+
2,
|
33 |
+
2,
|
34 |
+
2,
|
35 |
+
2,
|
36 |
+
2
|
37 |
+
],
|
38 |
+
"ctc_loss_reduction": "mean",
|
39 |
+
"ctc_zero_infinity": false,
|
40 |
+
"do_stable_layer_norm": true,
|
41 |
+
"eos_token_id": 2,
|
42 |
+
"feat_extract_activation": "gelu",
|
43 |
+
"feat_extract_dropout": 0.0,
|
44 |
+
"feat_extract_norm": "layer",
|
45 |
+
"feat_proj_dropout": 0.2,
|
46 |
+
"final_dropout": 0.0,
|
47 |
+
"gradient_checkpointing": true,
|
48 |
+
"hidden_act": "gelu",
|
49 |
+
"hidden_dropout": 0.04,
|
50 |
+
"hidden_size": 1024,
|
51 |
+
"initializer_range": 0.02,
|
52 |
+
"intermediate_size": 4096,
|
53 |
+
"layer_norm_eps": 1e-05,
|
54 |
+
"layerdrop": 0.05,
|
55 |
+
"mask_channel_length": 10,
|
56 |
+
"mask_channel_min_space": 1,
|
57 |
+
"mask_channel_other": 0.0,
|
58 |
+
"mask_channel_prob": 0.0,
|
59 |
+
"mask_channel_selection": "static",
|
60 |
+
"mask_feature_length": 10,
|
61 |
+
"mask_feature_prob": 0.0,
|
62 |
+
"mask_time_length": 10,
|
63 |
+
"mask_time_min_space": 1,
|
64 |
+
"mask_time_other": 0.0,
|
65 |
+
"mask_time_prob": 0.1,
|
66 |
+
"mask_time_selection": "static",
|
67 |
+
"model_type": "wav2vec2",
|
68 |
+
"num_attention_heads": 16,
|
69 |
+
"num_conv_pos_embedding_groups": 16,
|
70 |
+
"num_conv_pos_embeddings": 128,
|
71 |
+
"num_feat_extract_layers": 7,
|
72 |
+
"num_hidden_layers": 24,
|
73 |
+
"pad_token_id": 30,
|
74 |
+
"transformers_version": "4.4.2",
|
75 |
+
"vocab_size": 31
|
76 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_size": 1,
|
4 |
+
"padding_side": "right",
|
5 |
+
"padding_value": 0.0,
|
6 |
+
"return_attention_mask": true,
|
7 |
+
"sampling_rate": 16000
|
8 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ab46384537a8ea6bbfd53bb2a4715eb721a0de52c3746a25aa3d5931eae1a37
|
3 |
+
size 1262055847
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
|
trainer_state.json
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 18.95583596214511,
|
5 |
+
"global_step": 8000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 1.18,
|
12 |
+
"learning_rate": 0.00011848341232227489,
|
13 |
+
"loss": 5.8456,
|
14 |
+
"step": 500
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 1.18,
|
18 |
+
"eval_loss": 2.693875551223755,
|
19 |
+
"eval_runtime": 1054.431,
|
20 |
+
"eval_samples_per_second": 4.905,
|
21 |
+
"eval_wer": 1.0,
|
22 |
+
"step": 500
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"epoch": 2.37,
|
26 |
+
"learning_rate": 0.00023696682464454977,
|
27 |
+
"loss": 0.5706,
|
28 |
+
"step": 1000
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"epoch": 2.37,
|
32 |
+
"eval_loss": 0.19720512628555298,
|
33 |
+
"eval_runtime": 965.5246,
|
34 |
+
"eval_samples_per_second": 5.357,
|
35 |
+
"eval_wer": 0.4136704756426013,
|
36 |
+
"step": 1000
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"epoch": 3.55,
|
40 |
+
"learning_rate": 0.0003554502369668247,
|
41 |
+
"loss": 0.2135,
|
42 |
+
"step": 1500
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"epoch": 3.55,
|
46 |
+
"eval_loss": 0.17894236743450165,
|
47 |
+
"eval_runtime": 829.9805,
|
48 |
+
"eval_samples_per_second": 6.231,
|
49 |
+
"eval_wer": 0.3831812357817117,
|
50 |
+
"step": 1500
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 4.74,
|
54 |
+
"learning_rate": 0.00039178515007898897,
|
55 |
+
"loss": 0.1761,
|
56 |
+
"step": 2000
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 4.74,
|
60 |
+
"eval_loss": 0.1792241483926773,
|
61 |
+
"eval_runtime": 839.1507,
|
62 |
+
"eval_samples_per_second": 6.163,
|
63 |
+
"eval_wer": 0.3637789922338729,
|
64 |
+
"step": 2000
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 5.92,
|
68 |
+
"learning_rate": 0.0003786203264876251,
|
69 |
+
"loss": 0.1403,
|
70 |
+
"step": 2500
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"epoch": 5.92,
|
74 |
+
"eval_loss": 0.16667363047599792,
|
75 |
+
"eval_runtime": 773.0615,
|
76 |
+
"eval_samples_per_second": 6.69,
|
77 |
+
"eval_wer": 0.3549407734748843,
|
78 |
+
"step": 2500
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"epoch": 7.11,
|
82 |
+
"learning_rate": 0.00036545550289626125,
|
83 |
+
"loss": 0.1206,
|
84 |
+
"step": 3000
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 7.11,
|
88 |
+
"eval_loss": 0.16922971606254578,
|
89 |
+
"eval_runtime": 754.7522,
|
90 |
+
"eval_samples_per_second": 6.853,
|
91 |
+
"eval_wer": 0.35033862406191985,
|
92 |
+
"step": 3000
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 8.29,
|
96 |
+
"learning_rate": 0.00035229067930489733,
|
97 |
+
"loss": 0.1065,
|
98 |
+
"step": 3500
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 8.29,
|
102 |
+
"eval_loss": 0.17697516083717346,
|
103 |
+
"eval_runtime": 830.9983,
|
104 |
+
"eval_samples_per_second": 6.224,
|
105 |
+
"eval_wer": 0.34748842925502704,
|
106 |
+
"step": 3500
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 9.48,
|
110 |
+
"learning_rate": 0.00033912585571353347,
|
111 |
+
"loss": 0.0949,
|
112 |
+
"step": 4000
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"epoch": 9.48,
|
116 |
+
"eval_loss": 0.17623142898082733,
|
117 |
+
"eval_runtime": 808.622,
|
118 |
+
"eval_samples_per_second": 6.396,
|
119 |
+
"eval_wer": 0.34633789190178593,
|
120 |
+
"step": 4000
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"epoch": 10.66,
|
124 |
+
"learning_rate": 0.0003259610321221696,
|
125 |
+
"loss": 0.0834,
|
126 |
+
"step": 4500
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"epoch": 10.66,
|
130 |
+
"eval_loss": 0.17101719975471497,
|
131 |
+
"eval_runtime": 805.7401,
|
132 |
+
"eval_samples_per_second": 6.419,
|
133 |
+
"eval_wer": 0.33004732892294014,
|
134 |
+
"step": 4500
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 11.85,
|
138 |
+
"learning_rate": 0.0003127962085308057,
|
139 |
+
"loss": 0.0781,
|
140 |
+
"step": 5000
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 11.85,
|
144 |
+
"eval_loss": 0.1730242371559143,
|
145 |
+
"eval_runtime": 801.4866,
|
146 |
+
"eval_samples_per_second": 6.453,
|
147 |
+
"eval_wer": 0.3337342781685537,
|
148 |
+
"step": 5000
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"epoch": 13.03,
|
152 |
+
"learning_rate": 0.00029963138493944183,
|
153 |
+
"loss": 0.0702,
|
154 |
+
"step": 5500
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 13.03,
|
158 |
+
"eval_loss": 0.1908612698316574,
|
159 |
+
"eval_runtime": 817.2678,
|
160 |
+
"eval_samples_per_second": 6.328,
|
161 |
+
"eval_wer": 0.3248437622571451,
|
162 |
+
"step": 5500
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"epoch": 14.22,
|
166 |
+
"learning_rate": 0.00028646656134807797,
|
167 |
+
"loss": 0.065,
|
168 |
+
"step": 6000
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 14.22,
|
172 |
+
"eval_loss": 0.19133996963500977,
|
173 |
+
"eval_runtime": 815.1424,
|
174 |
+
"eval_samples_per_second": 6.345,
|
175 |
+
"eval_wer": 0.3376304160238475,
|
176 |
+
"step": 6000
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 15.4,
|
180 |
+
"learning_rate": 0.00027330173775671406,
|
181 |
+
"loss": 0.0634,
|
182 |
+
"step": 6500
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 15.4,
|
186 |
+
"eval_loss": 0.17903825640678406,
|
187 |
+
"eval_runtime": 788.5559,
|
188 |
+
"eval_samples_per_second": 6.559,
|
189 |
+
"eval_wer": 0.32520984232408545,
|
190 |
+
"step": 6500
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"epoch": 16.59,
|
194 |
+
"learning_rate": 0.0002601369141653502,
|
195 |
+
"loss": 0.0574,
|
196 |
+
"step": 7000
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 16.59,
|
200 |
+
"eval_loss": 0.2020258903503418,
|
201 |
+
"eval_runtime": 1572.1771,
|
202 |
+
"eval_samples_per_second": 3.29,
|
203 |
+
"eval_wer": 0.33182543210522186,
|
204 |
+
"step": 7000
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 17.77,
|
208 |
+
"learning_rate": 0.00024697209057398633,
|
209 |
+
"loss": 0.0539,
|
210 |
+
"step": 7500
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"epoch": 17.77,
|
214 |
+
"eval_loss": 0.18831460177898407,
|
215 |
+
"eval_runtime": 887.0107,
|
216 |
+
"eval_samples_per_second": 5.831,
|
217 |
+
"eval_wer": 0.3172083780038177,
|
218 |
+
"step": 7500
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 18.96,
|
222 |
+
"learning_rate": 0.00023380726698262242,
|
223 |
+
"loss": 0.0518,
|
224 |
+
"step": 8000
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 18.96,
|
228 |
+
"eval_loss": 0.19699327647686005,
|
229 |
+
"eval_runtime": 927.4568,
|
230 |
+
"eval_samples_per_second": 5.577,
|
231 |
+
"eval_wer": 0.31524723478806577,
|
232 |
+
"step": 8000
|
233 |
+
}
|
234 |
+
],
|
235 |
+
"max_steps": 16880,
|
236 |
+
"num_train_epochs": 40,
|
237 |
+
"total_flos": 3.909573475423295e+19,
|
238 |
+
"trial_name": null,
|
239 |
+
"trial_params": null
|
240 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3ff2eca68c59215249e3d45e21b893cb00ca2fcf912465cd2d8b55458c36c22
|
3 |
+
size 2287
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
1 |
+
{"q": 0, "b": 1, "r": 2, "h": 4, "j": 5, "f": 6, "a": 7, "u": 8, "x": 9, "p": 10, "w": 11, "z": 12, "k": 13, "e": 14, "l": 15, "y": 16, "t": 17, "g": 18, "c": 19, "d": 20, "o": 21, "n": 22, "ñ": 23, "v": 24, "m": 25, "s": 26, "i": 27, "|": 3, "[UNK]": 28, "[PAD]": 29}
|