--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-fine-tuned-on-emotion-dataset results: [] --- # distilbert-base-uncased-fine-tuned-on-emotion-dataset This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2138 - Accuracy Score: 0.9275 - F1 Score: 0.9275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:--------:| | 0.8024 | 1.0 | 250 | 0.3089 | 0.906 | 0.9021 | | 0.2448 | 2.0 | 500 | 0.2138 | 0.9275 | 0.9275 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1