--- license: mit tags: - biology - genomics - long-context library_name: transformers --- # DNAFlash ## Abouts ### Dependencies ``` rotary_embedding_torch einops ``` ## How to use ### Simple example: embedding ```python import torch from transformers import AutoTokenizer, AutoModel # Load the tokenizer and model using the pretrained model name tokenizer = AutoTokenizer.from_pretrained("isyslab/DNAFlash") model = AutoModel.from_pretrained("isyslab/DNAFlash", trust_remote_code=True) # Define input sequences sequences = [ "GAATTCCATGAGGCTATAGAATAATCTAAGAGAAATATATATATATTGAAAAAAAAAAAAAAAAAAAAAAAGGGG" ] # Tokenize the sequences inputs = tokenizer( sequences, add_special_tokens=True, return_tensors="pt", padding=True, truncation=True ) # Perform a forward pass through the model to obtain the outputs, including hidden states with torch.inference_mode(): outputs = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"]) ``` ## Citation