[paths] train = "./realec/grammar_minor_train.spacy" dev = "./realec/grammar_minor_dev.spacy" vectors = null init_tok2vec = null [system] gpu_allocator = "pytorch" seed = 0 [nlp] lang = "en" pipeline = ["transformer","spancat"] batch_size = 128 disabled = [] before_creation = null after_creation = null after_pipeline_creation = null tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} [components] [components.spancat] factory = "spancat" max_positive = null scorer = {"@scorers":"spacy.spancat_scorer.v1"} spans_key = "grammar_minor" threshold = 0.5 [components.spancat.model] @architectures = "spacy.SpanCategorizer.v1" [components.spancat.model.reducer] @layers = "spacy.mean_max_reducer.v1" hidden_size = 128 [components.spancat.model.scorer] @layers = "spacy.LinearLogistic.v1" nO = null nI = null [components.spancat.model.tok2vec] @architectures = "spacy-transformers.TransformerListener.v1" grad_factor = 1.0 pooling = {"@layers":"reduce_mean.v1"} upstream = "*" [components.spancat.suggester] @misc = "spacy.ngram_suggester.v1" sizes = [1,2,3] [components.transformer] factory = "transformer" max_batch_items = 4096 set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"} [components.transformer.model] @architectures = "spacy-transformers.TransformerModel.v3" name = "bert-base-cased" mixed_precision = false [components.transformer.model.get_spans] @span_getters = "spacy-transformers.strided_spans.v1" window = 128 stride = 96 [components.transformer.model.grad_scaler_config] [components.transformer.model.tokenizer_config] use_fast = true [components.transformer.model.transformer_config] [corpora] [corpora.dev] @readers = "spacy.Corpus.v1" path = "./realec/grammar_minor_dev.spacy" max_length = 0 gold_preproc = false limit = 0 augmenter = null [corpora.train] @readers = "spacy.Corpus.v1" path = "./realec/grammar_minor_train.spacy" max_length = 0 gold_preproc = false limit = 0 augmenter = null [training] accumulate_gradient = 3 dev_corpus = "corpora.dev" train_corpus = "corpora.train" frozen_components = [] seed = 0 gpu_allocator = "pytorch" dropout = 0.1 patience = 1600 max_epochs = 0 max_steps = 20000 eval_frequency = 200 annotating_components = [] before_to_disk = null [training.batcher] @batchers = "spacy.batch_by_padded.v1" discard_oversize = true size = 2000 buffer = 256 get_length = null [training.logger] @loggers = "spacy.WandbLogger.v3" project_name = "adwiser" remove_config_values = ["paths.train","paths.dev","corpora.train.path","corpora.dev.path"] model_log_interval = 1000 log_dataset_dir = null entity = null run_name = "grammar_minor" [training.optimizer] @optimizers = "Adam.v1" beta1 = 0.9 beta2 = 0.999 L2_is_weight_decay = true L2 = 0.01 grad_clip = 1.0 use_averages = false eps = 0.00000001 [training.optimizer.learn_rate] @schedules = "warmup_linear.v1" warmup_steps = 250 total_steps = 20000 initial_rate = 0.00005 [training.score_weights] spans_sc_f = 0.5 spans_sc_p = 0.0 spans_sc_r = 0.0 spans_Determiners_f = 0.18 spans_Noun_number_f = 0.01 spans_Numerals_f = 0.13 spans_Verb_pattern_f = 0.12 spans_Word_order_f = 0.07 [pretraining] [initialize] vectors = null init_tok2vec = null vocab_data = null lookups = null before_init = null after_init = null [initialize.components] [initialize.tokenizer]