# Gemma Model Fine-Tuned on Custom Data ## Model Description This model is a fine-tuned version of Gemma Model on custom data. It was trained using the SFTTrainer and incorporates LoRA configurations to enhance performance. ## Training Procedure - **Batch size**: 1 - **Gradient accumulation steps**: 4 - **Learning rate**: 2e-4 - **Warmup steps**: 2 - **Max steps**: 100 - **Optimizer**: Paged AdamW 8-bit - **FP16**: Enabled ## Usage You can use this model, Below is an example of how to load and use the model: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("iot/Gemma_model_fine_tune_custom_Data") model = AutoModelForCausalLM.from_pretrained("iot/Gemma_model_fine_tune_custom_Data") input_text = "Your input text here" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True))