|
import os |
|
from llava_phi import LlavaPhiForCausalLM, PhiConfig |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
import re |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig |
|
from typing import Optional, List |
|
|
|
class PhiCompressor(nn.Module): |
|
def __init__(self, compressor): |
|
super().__init__() |
|
|
|
self.model_path = compressor |
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path) |
|
self.compressor = LlavaPhiForCausalLM.from_pretrained(self.model_path) |
|
self.select_layer = 15 |
|
|
|
def forward_video_encoding( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
qs_ids: Optional[torch.LongTensor]= None, |
|
qs_mask: Optional[torch.Tensor] = None, |
|
time_labels: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
projector: Optional[torch.LongTensor] = None, |
|
select_layer: Optional[int] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> torch.FloatTensor: |
|
|
|
full_memory, full_time = self.compressor.forward_video_encoding( |
|
input_ids, |
|
attention_mask, |
|
qs_ids, |
|
qs_mask, |
|
time_labels, |
|
position_ids, |
|
past_key_values, |
|
inputs_embeds, |
|
labels, |
|
use_cache, |
|
output_attentions, |
|
output_hidden_states, |
|
images, |
|
projector, |
|
select_layer, |
|
return_dict |
|
) |
|
return full_memory, full_time |
|
|
|
def forward_question( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
qs_ids: Optional[torch.LongTensor]= None, |
|
qs_mask: Optional[torch.Tensor] = None, |
|
time_labels: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
memory: Optional[torch.FloatTensor] = None, |
|
projector: Optional[torch.LongTensor] = None, |
|
select_layer: Optional[int] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> torch.FloatTensor: |
|
|
|
qs_token = self.compressor.forward_question( |
|
input_ids, |
|
attention_mask, |
|
qs_ids, |
|
qs_mask, |
|
time_labels, |
|
position_ids, |
|
past_key_values, |
|
inputs_embeds, |
|
labels, |
|
use_cache, |
|
output_attentions, |
|
output_hidden_states, |
|
memory, |
|
projector, |
|
select_layer, |
|
return_dict |
|
) |
|
return qs_token |
|
|
|
def forward_compress( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
qs_ids: Optional[torch.LongTensor]= None, |
|
qs_mask: Optional[torch.Tensor] = None, |
|
time_labels: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
projector: Optional[torch.LongTensor] = None, |
|
select_layer: Optional[int] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> torch.FloatTensor: |
|
|
|
compress_tokens, loss, similarity = self.compressor.forward_token( |
|
input_ids, |
|
attention_mask, |
|
qs_ids, |
|
qs_mask, |
|
time_labels, |
|
position_ids, |
|
past_key_values, |
|
inputs_embeds, |
|
labels, |
|
use_cache, |
|
output_attentions, |
|
output_hidden_states, |
|
images, |
|
projector, |
|
select_layer, |
|
return_dict |
|
) |
|
return compress_tokens, loss, similarity |
|
|
|
def forward(self, clips, seqs, compress_mask, qs, qs_mask, time_labels): |
|
return self.forward_compress(input_ids=seqs, attention_mask=compress_mask, qs_ids=qs, qs_mask=qs_mask, images=clips, select_layer=self.select_layer, time_labels=time_labels) |
|
|
|
|
|
@property |
|
def dummy_feature(self): |
|
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) |
|
|
|
@property |
|
def dtype(self): |
|
return self.compressor.dtype |
|
|
|
@property |
|
def device(self): |
|
return self.compressor.device |
|
|
|
@property |
|
def config(self): |
|
return self.compressor.config |
|
|
|
@property |
|
def hidden_size(self): |
|
return self.config.hidden_size |
|
|
|
|
|
def build_compressor(compressor_cfg): |
|
compressor = getattr(compressor_cfg, 'mm_compressor', getattr(compressor_cfg, 'compressor', None)) |
|
is_absolute_path_exists = os.path.exists(compressor) |
|
if is_absolute_path_exists: |
|
return PhiCompressor(compressor) |
|
|
|
raise ValueError(f'Unknown compressor: {compressor}') |
|
|
|
|
|
def build_compress_projector(config): |
|
projector_type = getattr(config, 'compress_projector_type', 'linear') |
|
|
|
if projector_type == 'linear': |
|
return nn.Linear(config.compress_hidden_size, config.hidden_size) |
|
|
|
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) |
|
if mlp_gelu_match: |
|
mlp_depth = int(mlp_gelu_match.group(1)) |
|
modules = [nn.Linear(config.compress_hidden_size, config.hidden_size)] |
|
for _ in range(1, mlp_depth): |
|
modules.append(nn.GELU()) |
|
modules.append(nn.Linear(config.hidden_size, config.hidden_size)) |
|
return nn.Sequential(*modules) |
|
|
|
if projector_type == 'identity': |
|
return IdentityMap() |
|
|
|
raise ValueError(f'Unknown projector type: {projector_type}') |
|
|