--- base_model: dmis-lab/biobert-base-cased-v1.2 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: NHS-dmis12-multi results: [] --- # NHS-dmis12-multi This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8275 - Accuracy: 0.7110 - Precision: 0.7182 - Recall: 0.7110 - F1: 0.7138 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4089 | 1.0 | 397 | 0.7197 | 0.7230 | 0.7305 | 0.7230 | 0.7244 | | 0.0462 | 2.0 | 794 | 0.7843 | 0.7104 | 0.7117 | 0.7104 | 0.6979 | | 1.846 | 3.0 | 1191 | 0.8275 | 0.7110 | 0.7182 | 0.7110 | 0.7138 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2