--- tags: - merge - mergekit --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/642b04e4ecec03b44649e318/Z4a8op_F7GOyd4b7RkRn6.png) # MiaLatte-Indo-Mistral-7b MiaLatte is a derivative model of [OpenMia](https://huggingface.co/indischepartij/OpenMia-Indo-Mistral-7b-v2), which is able to answer everyday questions specifically in Bahasa Indonesia (Indonesia Language). some of GGUF: https://huggingface.co/indischepartij/MiaLatte-Indo-Mistral-7b-GGUF # Examples ![image/png](https://cdn-uploads.huggingface.co/production/uploads/642b04e4ecec03b44649e318/OEJeEm85m5T3arlP1tKqx.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/642b04e4ecec03b44649e318/YF3ueo-OFis7PcGwkKwb1.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/642b04e4ecec03b44649e318/G26MN5W0TcKkLOj9tbSqW.png) MiaLatte-Indo-Mistral-7b is a merge of the following models using MergeKit: * [indischepartij/OpenMia-Indo-Mistral-7b-v2](https://huggingface.co/indischepartij/OpenMia-Indo-Mistral-7b-v2) * [Obrolin/Kesehatan-7B-v0.1](https://huggingface.co/Obrolin/Kesehatan-7B-v0.1) * [FelixChao/WestSeverus-7B-DPO-v2](https://huggingface.co/FelixChao/WestSeverus-7B-DPO-v2) ## 🧩 Configuration ```yaml slices: models: - model: indischepartij/OpenMia-Indo-Mistral-7b-v2 parameters: density: 0.50 weight: 0.35 - model: Obrolin/Kesehatan-7B-v0.1 parameters: density: 0.50 weight: 0.35 - model: FelixChao/WestSeverus-7B-DPO-v2 parameters: density: 0.50 weight: 0.30 merge_method: dare_ties base_model: indischepartij/OpenMia-Indo-Mistral-7b-v2 parameters: int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "indischepartij/MiaLatte-Indo-Mistral-7b" messages = [{"role": "user", "content": "Apa jenis skincare yang cocok untuk kulit berjerawat??"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```