--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7272727272727273 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6322 - Accuracy: 0.7273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.97 | 9 | 1.0291 | 0.4621 | | 1.0954 | 1.95 | 18 | 0.8322 | 0.6136 | | 0.8859 | 2.92 | 27 | 0.7934 | 0.6364 | | 0.7328 | 4.0 | 37 | 0.7151 | 0.6742 | | 0.6285 | 4.97 | 46 | 0.7614 | 0.6061 | | 0.5817 | 5.95 | 55 | 0.7581 | 0.6439 | | 0.5145 | 6.92 | 64 | 0.6608 | 0.7121 | | 0.4899 | 8.0 | 74 | 0.6711 | 0.6894 | | 0.4372 | 8.97 | 83 | 0.6322 | 0.7273 | | 0.4452 | 9.73 | 90 | 0.6399 | 0.7121 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1