--- base_model: unsloth/mistral-7b-v0.3 library_name: peft license: apache-2.0 tags: - unsloth - generated_from_trainer model-index: - name: Mistral-7B-v0.3_pct_reverse_r16 results: [] --- # Mistral-7B-v0.3_pct_reverse_r16 This model is a fine-tuned version of [unsloth/mistral-7b-v0.3](https://huggingface.co/unsloth/mistral-7b-v0.3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.9648 | 0.0206 | 8 | 2.0392 | | 2.0599 | 0.0413 | 16 | 2.0531 | | 2.1274 | 0.0619 | 24 | 2.0571 | | 2.0718 | 0.0825 | 32 | 2.0473 | | 2.0646 | 0.1032 | 40 | 2.0420 | | 2.0883 | 0.1238 | 48 | 2.0460 | | 2.0611 | 0.1445 | 56 | 2.0497 | | 2.0841 | 0.1651 | 64 | 2.0536 | | 2.0695 | 0.1857 | 72 | 2.0688 | | 2.0696 | 0.2064 | 80 | 2.0792 | | 2.1315 | 0.2270 | 88 | 2.0900 | | 2.1466 | 0.2476 | 96 | 2.0827 | | 2.1575 | 0.2683 | 104 | 2.0826 | | 2.0925 | 0.2889 | 112 | 2.0864 | | 2.1647 | 0.3096 | 120 | 2.0815 | | 2.1018 | 0.3302 | 128 | 2.0882 | | 2.1062 | 0.3508 | 136 | 2.0904 | | 2.1596 | 0.3715 | 144 | 2.0847 | | 2.1473 | 0.3921 | 152 | 2.0933 | | 2.1388 | 0.4127 | 160 | 2.0888 | | 2.093 | 0.4334 | 168 | 2.0887 | | 2.1704 | 0.4540 | 176 | 2.0933 | | 2.0697 | 0.4746 | 184 | 2.0779 | | 2.1725 | 0.4953 | 192 | 2.0714 | | 2.1339 | 0.5159 | 200 | 2.0695 | | 2.106 | 0.5366 | 208 | 2.0640 | | 2.0857 | 0.5572 | 216 | 2.0792 | | 2.0751 | 0.5778 | 224 | 2.0658 | | 2.0987 | 0.5985 | 232 | 2.0659 | | 2.0817 | 0.6191 | 240 | 2.0628 | | 2.1341 | 0.6397 | 248 | 2.0564 | | 2.0567 | 0.6604 | 256 | 2.0517 | | 2.1246 | 0.6810 | 264 | 2.0457 | | 2.0623 | 0.7017 | 272 | 2.0423 | | 2.1106 | 0.7223 | 280 | 2.0369 | | 2.1094 | 0.7429 | 288 | 2.0375 | | 2.0678 | 0.7636 | 296 | 2.0330 | | 2.0521 | 0.7842 | 304 | 2.0326 | | 2.0594 | 0.8048 | 312 | 2.0241 | | 2.051 | 0.8255 | 320 | 2.0208 | | 2.0392 | 0.8461 | 328 | 2.0201 | | 2.0143 | 0.8667 | 336 | 2.0207 | | 2.0678 | 0.8874 | 344 | 2.0222 | | 2.0473 | 0.9080 | 352 | 2.0187 | | 2.0324 | 0.9287 | 360 | 2.0165 | | 2.0404 | 0.9493 | 368 | 2.0160 | | 2.0426 | 0.9699 | 376 | 2.0163 | | 2.0635 | 0.9906 | 384 | 2.0162 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1