--- base_model: mistralai/Mistral-7B-v0.3 library_name: peft license: apache-2.0 tags: - unsloth - generated_from_trainer model-index: - name: Mistral-7B-v0.3_pct_ortho_r32 results: [] --- # Mistral-7B-v0.3_pct_ortho_r32 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.9673 | 0.0206 | 8 | 1.9675 | | 1.982 | 0.0413 | 16 | 1.9762 | | 1.9563 | 0.0619 | 24 | 1.9745 | | 1.957 | 0.0825 | 32 | 1.9779 | | 2.0248 | 0.1032 | 40 | 1.9852 | | 1.9753 | 0.1238 | 48 | 1.9988 | | 1.9752 | 0.1444 | 56 | 1.9974 | | 2.0253 | 0.1651 | 64 | 1.9947 | | 2.0073 | 0.1857 | 72 | 1.9872 | | 1.9826 | 0.2063 | 80 | 1.9953 | | 1.9907 | 0.2270 | 88 | 2.0015 | | 1.9795 | 0.2476 | 96 | 1.9951 | | 1.9882 | 0.2682 | 104 | 2.0020 | | 1.9896 | 0.2889 | 112 | 1.9963 | | 2.0177 | 0.3095 | 120 | 2.0146 | | 2.0131 | 0.3301 | 128 | 2.0013 | | 2.0384 | 0.3508 | 136 | 2.0017 | | 2.0587 | 0.3714 | 144 | 2.0019 | | 1.9998 | 0.3920 | 152 | 1.9965 | | 1.9729 | 0.4127 | 160 | 1.9905 | | 2.0339 | 0.4333 | 168 | 2.0233 | | 2.0029 | 0.4539 | 176 | 1.9972 | | 1.997 | 0.4746 | 184 | 1.9976 | | 1.9808 | 0.4952 | 192 | 2.0007 | | 2.0169 | 0.5158 | 200 | 1.9872 | | 1.9605 | 0.5364 | 208 | 1.9975 | | 2.0195 | 0.5571 | 216 | 1.9963 | | 1.9619 | 0.5777 | 224 | 1.9878 | | 1.9361 | 0.5983 | 232 | 2.0045 | | 1.9932 | 0.6190 | 240 | 1.9815 | | 1.9519 | 0.6396 | 248 | 1.9896 | | 1.9843 | 0.6602 | 256 | 1.9901 | | 1.963 | 0.6809 | 264 | 1.9820 | | 1.9376 | 0.7015 | 272 | 1.9793 | | 1.9876 | 0.7221 | 280 | 1.9885 | | 2.0157 | 0.7428 | 288 | 1.9834 | | 2.011 | 0.7634 | 296 | 1.9843 | | 2.0179 | 0.7840 | 304 | 1.9779 | | 1.9693 | 0.8047 | 312 | 1.9787 | | 1.9632 | 0.8253 | 320 | 1.9824 | | 1.9367 | 0.8459 | 328 | 1.9776 | | 1.9824 | 0.8666 | 336 | 1.9730 | | 1.9911 | 0.8872 | 344 | 1.9719 | | 2.0075 | 0.9078 | 352 | 1.9730 | | 1.9809 | 0.9285 | 360 | 1.9730 | | 1.9971 | 0.9491 | 368 | 1.9722 | | 1.9913 | 0.9697 | 376 | 1.9720 | | 1.916 | 0.9904 | 384 | 1.9721 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.3.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1