{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe38bb2b2c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696189023300718124, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA1nEL6cn7Q/9DgjvzGudL6kBhS+CLR0vgAAAAAAAAAAs9V5vRRIj7qFMVG6rUJXtbifHjmCJXI5AACAPwAAgD8AuIy7vd8FPiybuD3quli+2nlhPSDVFTwAAAAAAAAAABosTb2uIq0/Y3/TvrwQj76ADhO9GhY8vgAAAAAAAAAAM8twu8MxarrAyVu3rVprsnhjxjo3DIE2AACAPwAAgD9NcPy9YuLiPvbHXD7pS1u+8sN7PO0NjD0AAAAAAAAAANpRdD4KAAu9uwNSu7Ak/zmU13W+PvCKOgAAgD8AAIA/wEu7PUibiLqGC7K3IDOesr9Oe7oTgs82AACAPwAAAADjF4k+gdMdvaAr3jrvSJK5KOqJvpKPEroAAIA/AACAP7O3Yb6OCVU/2PI2Ph/Otb5r5zq9N0mHPAAAAAAAAAAAGgpYPpgdlD4wj4i9y0E4vpLbJbylQp28AAAAAAAAAABN9mk9cHq5Pyvw7D5jwZi79DlcvQwkkbwAAAAAAAAAAM0e9Dx77pa6wGeOOSr+hTSD1Ku63cSkuAAAgD8AAIA/5jfKPVI/ibuuoRS8zJ8wPNxD3bz1ths9AACAPwAAgD+AHEO9YMKrPyFHAr8PjsG+i32gPFOjeL0AAAAAAAAAAOCYhr43F2E/CvhCPuSYj749xYG9hbupPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDuJBC2MKmMAWyUTfACjAF0lEdAoGoJlar3kHV9lChoBkdAcRaa4MF2V2gHTXEBaAhHQKBqx50KZ2J1fZQoaAZHQEwZrpqynk1oB00SAWgIR0Cga7bA+IM0dX2UKGgGR0Bv9fzDn/1haAdNWAJoCEdAoGu/b/Ot4nV9lChoBkdAcQl+i8FpwmgHTW0DaAhHQKBr96kZaV51fZQoaAZHQHEJ4DDCP6toB02nAWgIR0CgbtQOFxn4dX2UKGgGR0BwGn7di2DyaAdNQAFoCEdAoG8ZK15SnHV9lChoBkdAb94ay8jAz2gHTX8BaAhHQKBwCOavzOJ1fZQoaAZHQHAoSMtK7I1oB01CAmgIR0CgcHc274BWdX2UKGgGR0A9Xhw2l2vCaAdL3mgIR0CgcN5Tho/SdX2UKGgGR0BwYHs4T9KmaAdN1QFoCEdAoHI8s4DLbHV9lChoBkdAb26up0fYBmgHTegCaAhHQKBys5FPSD11fZQoaAZHQG5k3GwRoRJoB03LAWgIR0Cgc2thd+ocdX2UKGgGR0Bvv12vB7/oaAdNqAFoCEdAoHPe+AVfu3V9lChoBkdAcOqRHf/FSGgHTWsBaAhHQKB0TVCojwB1fZQoaAZHQG0E8TSLIghoB02iAWgIR0CgdH0mUnogdX2UKGgGR0BwjbXPJJXhaAdNmQJoCEdAoHUt72L5ynV9lChoBkdAcPqeZXuE3GgHTXYCaAhHQKB1iJbdJrd1fZQoaAZHQG1G0r9VFQVoB00XAWgIR0CgdYr4FiazdX2UKGgGR0BuKtsrNGExaAdNIwFoCEdAoHZ4llbu+nV9lChoBkdAcVlqx1PnCGgHTV4DaAhHQKB38avRqoJ1fZQoaAZHQHI9NRzijtZoB020AWgIR0CgeESXlbNbdX2UKGgGR0BvJ2EZiuuBaAdNLwNoCEdAoHhb1VYISnV9lChoBkdAcgbzdDYywmgHTW4BaAhHQKB5qZAprk91fZQoaAZHQEgq4iHIp6RoB0viaAhHQKB6Cq4H5ah1fZQoaAZHQEcNz06HTJBoB0vlaAhHQKB6HjCHh0h1fZQoaAZHQHIc5A+pwS9oB01bAWgIR0CghdvfCQ9zdX2UKGgGR0BuE5wQ176YaAdNUgFoCEdAoIY3OD8Lr3V9lChoBkdAcHt/GEPDpGgHTfwBaAhHQKCGQIxgy/N1fZQoaAZHQG5Adl2/zrhoB03tAmgIR0Cghxn/tICmdX2UKGgGR0BusiCDmKZVaAdNuQFoCEdAoIcrqKP4mHV9lChoBkdAcTlLidat92gHTaYBaAhHQKCIQ+HJtBR1fZQoaAZHQG1B7xmTTv1oB000AWgIR0CgiOmyX2M9dX2UKGgGR0Bx5y3Ytg8baAdNqgFoCEdAoImiODJ2dXV9lChoBkdAcg5+pfhMrWgHTR0CaAhHQKCJpGx2SuB1fZQoaAZHQHDtAm/nGKhoB00YAWgIR0CgijuXVsk6dX2UKGgGR0BPmDk+5e7daAdNEAFoCEdAoIq/KbKA8XV9lChoBkdAclSwWWQfZGgHTekCaAhHQKCK0NZNfw91fZQoaAZHQHHQ32VVxS5oB03GAWgIR0CgjC5Lh73PdX2UKGgGR0BwufHWBjFyaAdNmgFoCEdAoIya+JxecHV9lChoBkdAccbOIZZSvWgHTfgCaAhHQKCMqDXe3x51fZQoaAZHQG+9JQ1rIo5oB01rAWgIR0CgjQ1aGHpKdX2UKGgGR0BzFH7TDwYtaAdNfQFoCEdAoI5u/k/8mHV9lChoBkdAcNbWRRuTA2gHTUYCaAhHQKCOp0T101Z1fZQoaAZHQHFyNEXtShtoB02aAWgIR0CgjvhAfMfSdX2UKGgGR0ByofN0NjLCaAdNcgFoCEdAoJA+0Re1KHV9lChoBkdAbsApCKJl8WgHTbYBaAhHQKCQ5t6X0Gx1fZQoaAZHQFEZOnVG0/poB0v+aAhHQKCRTf9gndB1fZQoaAZHQG+Se0G/vfFoB000AWgIR0CgkulSbYsedX2UKGgGR0ByBR14gRseaAdNygJoCEdAoJMZG6PKdXV9lChoBkdAbwzUsFt8/mgHTa0CaAhHQKCTu+cH4XZ1fZQoaAZHQHHLFCTlkpZoB00pAWgIR0CglNA5BC2MdX2UKGgGR0BxMlGRV6u5aAdNmgFoCEdAoJVKnrIHT3V9lChoBkdAbhsZiuuA7WgHTZ0CaAhHQKCYMg13t8h1fZQoaAZHQG48qubI91VoB03DAWgIR0CgmX26ClJpdX2UKGgGR0BtlWWhRIjGaAdNXgJoCEdAoJx1bVz6rXV9lChoBkdAb9sqJ/G2kWgHTQ8DaAhHQKCcp16E8JV1fZQoaAZHQG2/Pgeii7FoB03ZAWgIR0CgqBQBPsRhdX2UKGgGR0BxpZ7hNucdaAdNNQFoCEdAoKhXllsguHV9lChoBkdAb8r9gF5fMWgHTW0BaAhHQKCoiwosqax1fZQoaAZHQHJDd9hJAdJoB00dA2gIR0CgqJhUR3/xdX2UKGgGR0BvoE3GXHBDaAdNlQFoCEdAoKjLThHby3V9lChoBkdAcJNGUfPom2gHTacBaAhHQKCo+jiXIEN1fZQoaAZHQG7fXfAKv3doB01BAWgIR0CgqQZ1V5rydX2UKGgGR0BwnAiA2AG0aAdNXQNoCEdAoKk2nbZezHV9lChoBkdAbg6+0PYnOWgHTTgCaAhHQKCqHeruIAR1fZQoaAZHQHA5wUg0TDhoB004AWgIR0CgqppiRW92dX2UKGgGR0BySVwCKaXsaAdNVAFoCEdAoKuUSsbNr3V9lChoBkdAZow1Cw8nu2gHTegDaAhHQKCr3KUVzp51fZQoaAZHQHF9G+49X91oB008AWgIR0CgrHqZDzAfdX2UKGgGR0BvFAZjx0+1aAdNSANoCEdAoKy44wRGt3V9lChoBkdAcXFIpYs/ZGgHTQoBaAhHQKCtOTJQtSR1fZQoaAZHQHAhPAbhm5FoB00/AWgIR0CgraKkuYhMdX2UKGgGR0Bx0zF3pwCKaAdNTwNoCEdAoK4MHt4RmXV9lChoBkdAbhC7LdN34mgHTS0BaAhHQKCuEku6ErZ1fZQoaAZHQDBy+mFajetoB00FAWgIR0Cgrp/tx+8XdX2UKGgGR0Brqjs2NvOyaAdNbQFoCEdAoK6nYlIEsHV9lChoBkdAca12wV0tAmgHTXkBaAhHQKCu/oIv8Il1fZQoaAZHQE1ZiG34Kx9oB0v0aAhHQKCv5VR1oxp1fZQoaAZHQHG7W8h9srNoB004AWgIR0CgsAS7wrlOdX2UKGgGR0Bwe7j3mFJyaAdNlgFoCEdAoLAeH58BuHV9lChoBkdAcD9gPVd5ZGgHTcwBaAhHQKCwbnJ1aGJ1fZQoaAZHQG5RwkPczqNoB032AWgIR0CgsX2H+IdmdX2UKGgGR0Bsu1jd56dEaAdNUgFoCEdAoLG1pAUtZnV9lChoBkdAcg/xkupS8GgHTVEBaAhHQKCyjLK3d9F1fZQoaAZHQHMSIUahpQFoB000AWgIR0Cgs3uU+s5odX2UKGgGR0Bt0QTufEn9aAdNIQFoCEdAoLPRVU+9rXV9lChoBkdAa1cLfk3juWgHTSIBaAhHQKCzz0gbIcR1fZQoaAZHQHHky1Z1V5toB00RAWgIR0Cgs+jWTX8PdX2UKGgGR0BocEhPj4pMaAdNEQNoCEdAoLUYzzmOl3V9lChoBkdAcLUq5LAYYWgHTRkBaAhHQKC1OUVzp5h1fZQoaAZHQHL8fyCnP3VoB03AAWgIR0Cgtcuez2OAdX2UKGgGR0BxTm6Ymb9ZaAdNSAFoCEdAoLalVR1ox3V9lChoBkdAcKfgEU0vXmgHTRcCaAhHQKC3XEzfrKN1fZQoaAZHQG7uCPp6hQFoB003AWgIR0CguHso2GZedX2UKGgGR0BxSKZmZmZmaAdNpgFoCEdAoLiEDlo11nV9lChoBkdAcUuaAnUlRmgHTWgBaAhHQKC7Q1CPZIx1fZQoaAZHQG/q22gFotdoB00yAWgIR0Cgu4xh2GIsdX2UKGgGR0ByYW/RE4NraAdNOAFoCEdAoLuWsLfDUHV9lChoBkdAbm+bH6uW8mgHTUgBaAhHQKC7pUsFt9B1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}