--- library_name: transformers language: - ko license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper turbo KO - GTH results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: ko split: None args: 'config: ko, split: test' metrics: - type: wer value: 27.00534759358289 name: Wer --- # Whisper turbo KO - GTH This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5105 - Wer: 27.0053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0087 | 22.2222 | 1000 | 0.4786 | 30.3667 | | 0.0014 | 44.4444 | 2000 | 0.4935 | 30.7105 | | 0.0001 | 66.6667 | 3000 | 0.5067 | 27.0817 | | 0.0001 | 88.8889 | 4000 | 0.5105 | 27.0053 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3