--- license: apache-2.0 tags: - keras - time-series - lstm - regression datasets: - output8.csv metrics: - mean_squared_error model_name: my_model --- # bhaskar1 The above model is a simple neural network built using TensorFlow/Keras. It is designed to perform a regression task, which means it predicts continuous numeric values based on input features. # Keras Model for Time Series Prediction This repository contains a Keras model trained for time series prediction. ## Model Overview The model is a simple neural network built using Keras. It is designed to perform regression tasks, predicting a numeric value from input features. ### Architecture - **Input Layer**: 10 neurons, ReLU activation - **Hidden Layer**: 10 neurons, ReLU activation - **Output Layer**: 1 neuron (for regression) ## How to Use the Model To use this model, follow the steps below: ### 1. Install Required Libraries Make sure you have the necessary libraries installed: ```bash pip install tensorflow huggingface-hub pandas matplotlib #load the model from the Hugging Face Hub: import tensorflow as tf from huggingface_hub import from_pretrained_keras import pandas as pd import numpy as np import matplotlib.pyplot as plt # Load the model from Hugging Face Hub model = from_pretrained_keras("iiitbh18/bhaskar1") # Prepare Dummy Data # Create a DataFrame with dummy data dummy_data = { 'timestamp': [ '2024-08-07 02:43:28.788', '2024-08-07 02:43:28.788', '2024-08-07 02:43:43.788', '2024-08-07 02:43:43.788', '2024-08-07 02:43:58.788' ], 'value': [ 99.00000005960464, 98.90000000596046, 98.70000004768372, 99.00000005960464, 98.89999993145466 ] } df = pd.DataFrame(dummy_data) #Prepare Data for Prediction X_dummy = df['value'].values.reshape(-1, 1) # Reshape to match model's input shape # Make Predictions predictions = model.predict(X_dummy) print("Predictions:", predictions) #Visualize the Results # Plot actual vs. predicted values plt.figure(figsize=(10, 6)) plt.scatter(df['timestamp'], df['value'], color='blue', label='Actual Values') plt.scatter(df['timestamp'], predictions, color='red', label='Predicted Values') plt.xlabel('Timestamp') plt.ylabel('Value') plt.title('Actual vs Predicted Values') plt.legend() plt.xticks(rotation=45) plt.show()