--- library_name: transformers tags: [] --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use ```python import torch import librosa from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq processor = AutoProcessor.from_pretrained("iiBLACKii/Gujarati_VDB_Fine_Tune") model = AutoModelForSpeechSeq2Seq.from_pretrained("iiBLACKii/Gujarati_VDB_Fine_Tune") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def preprocess_audio(file_path, sampling_rate=16000): audio_array, sr = librosa.load(file_path, sr=None) if sr != sampling_rate: audio_array = librosa.resample(audio_array, orig_sr=sr, target_sr=sampling_rate) return audio_array def transcribe_and_translate_audio(audio_path): audio_array = preprocess_audio(audio_path) input_features = processor(audio_array, return_tensors="pt", sampling_rate=16000).input_features input_features = input_features.to(device) with torch.no_grad(): predicted_ids = model.generate(input_features, max_length=400, num_beams=5) transcription_or_translation = processor.batch_decode(predicted_ids, skip_special_tokens=True) return transcription_or_translation[0] if __name__ == "__main__": audio_file_path = "" # .wav file path print("Transcribing and Translating audio...") result = transcribe_and_translate_audio(audio_file_path) print(f"Result: {result}") ``` [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]