--- language: - ps_af license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Base Pashto - Augmented results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs type: google/fleurs config: ps_af split: test args: ps_af metrics: - name: Wer type: wer value: 75.59019370460048 --- # Whisper Base Pashto - Augmented This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the google/fleurs dataset. It achieves the following results on the evaluation set: - Loss: 1.1695 - Wer: 75.5902 - Cer: 32.7613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 30 - training_steps: 600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 2.4594 | 2.38 | 100 | 2.0072 | 337.3411 | 342.0691 | | 1.8517 | 4.75 | 200 | 1.4907 | 89.7927 | 40.2811 | | 1.7019 | 7.14 | 300 | 1.3038 | 81.7494 | 36.1352 | | 1.5249 | 9.52 | 400 | 1.2200 | 77.5575 | 33.8324 | | 1.4583 | 11.89 | 500 | 1.1808 | 76.5814 | 33.1807 | | 1.4388 | 14.28 | 600 | 1.1695 | 75.5902 | 32.7613 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2