#!/usr/bin/env python # coding=utf-8 # Copyright 2021-2022 The HuggingFace & DALL·E Mini team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Training DALL·E Mini. Script adapted from run_summarization_flax.py """ import io import logging import os import sys import tempfile import time from dataclasses import asdict, dataclass, field from functools import partial from pathlib import Path from typing import Any, Callable, NamedTuple, Optional import datasets import flax import jax import jax.numpy as jnp import jaxlib import numpy as np import optax import transformers import wandb from datasets import Dataset from flax import core, struct, traverse_util from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.serialization import from_bytes, to_bytes from flax.training.common_utils import onehot from jax.experimental import PartitionSpec, maps from jax.experimental.compilation_cache import compilation_cache as cc from jax.experimental.pjit import pjit, with_sharding_constraint from scalable_shampoo.distributed_shampoo import GraftingType, distributed_shampoo from tqdm import tqdm from transformers import HfArgumentParser import dalle_mini from dalle_mini.data import Dataset from dalle_mini.model import ( DalleBart, DalleBartConfig, DalleBartTokenizer, set_partitions, ) try: from google.cloud import storage except: storage = None logger = logging.getLogger(__name__) cc.initialize_cache("jax_cache") @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization. " "Don't set if you want to train a model from scratch. " "W&B artifact references are supported in addition to the sources supported by `PreTrainedModel`." }, ) config_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained config name or path if not the same as model_name_or_path" }, ) tokenizer_name: Optional[str] = field( default=None, metadata={ "help": "Pretrained tokenizer name or path if not the same as model_name_or_path" }, ) dtype: Optional[str] = field( default="float32", metadata={ "help": "Floating-point format in which the computations will be performed (not the model weights). Choose one of `[float32, float16, bfloat16]`." }, ) restore_state: Optional[bool] = field( default=False, metadata={ "help": "Restore optimizer and training state. Can be True (will retrieve associated wandb artifact), a local directory or a Google bucket path." }, ) dropout: Optional[float] = field( default=None, metadata={"help": "Dropout rate. Overwrites config."}, ) activation_dropout: Optional[float] = field( default=None, metadata={"help": "Activation dropout rate. Overwrites config."}, ) attention_dropout: Optional[float] = field( default=None, metadata={"help": "Attention dropout rate. Overwrites config."}, ) def __post_init__(self): if self.tokenizer_name is None: self.tokenizer_name = self.model_name_or_path assert ( self.tokenizer_name is not None ), "Tokenizer name or model name/path needs to be specified" if self.restore_state: assert self.model_name_or_path is not None and ( "/model-" in self.model_name_or_path ), "Restoring state only available with W&B artifact reference" def get_metadata(self): if self.model_name_or_path is not None and ":" in self.model_name_or_path: if jax.process_index() == 0: artifact = wandb.run.use_artifact(self.model_name_or_path) else: artifact = wandb.Api().artifact(self.model_name_or_path) return artifact.metadata else: return dict() def get_opt_state(self): with tempfile.TemporaryDirectory() as tmp_dir: # avoid multiple artifact copies if self.restore_state is True: # wandb artifact state_artifact = self.model_name_or_path.replace( "/model-", "/state-", 1 ) if jax.process_index() == 0: artifact = wandb.run.use_artifact(state_artifact) else: artifact = wandb.Api().artifact(state_artifact) if artifact.metadata.get("bucket_path"): # we will read directly file contents self.restore_state = artifact.metadata["bucket_path"] else: artifact_dir = artifact.download(tmp_dir) self.restore_state = str(Path(artifact_dir) / "opt_state.msgpack") if self.restore_state.startswith("gs://"): bucket_path = Path(self.restore_state[5:]) / "opt_state.msgpack" bucket, blob_name = str(bucket_path).split("/", 1) assert ( storage is not None ), 'Could not find google.storage. Install with "pip install google-cloud-storage"' client = storage.Client() bucket = client.bucket(bucket) blob = bucket.blob(blob_name) return blob.download_as_bytes() with Path(self.restore_state).open("rb") as f: return f.read() @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ text_column: Optional[str] = field( default="caption", metadata={ "help": "The name of the column in the datasets containing the full texts (for summarization)." }, ) encoding_column: Optional[str] = field( default="encoding", metadata={ "help": "The name of the column in the datasets containing the image encodings." }, ) dataset_repo_or_path: str = field( default=None, metadata={"help": "The dataset repository containing encoded files."}, ) train_file: Optional[str] = field( default=None, metadata={ "help": "The input training data file (glob & braceexpand acceptable)." }, ) validation_file: Optional[str] = field( default=None, metadata={ "help": "An optional input evaluation data file (glob & braceexpand acceptable)." }, ) # data loading should not be a bottleneck so we use "streaming" mode by default streaming: Optional[bool] = field( default=True, metadata={"help": "Whether to stream the dataset."}, ) use_auth_token: Optional[bool] = field( default=False, metadata={ "help": "Whether to use the authentication token for private datasets." }, ) shard_by_host: Optional[bool] = field( default=False, metadata={ "help": "Whether to shard data files by host in multi-host environments." }, ) blank_caption_prob: Optional[float] = field( default=0.0, metadata={ "help": "Probability of removing some captions for classifier-free guidance." }, ) clip_score_column: Optional[str] = field( default="clip_score", metadata={"help": "Column that containts clip score for filtering."}, ) min_clip_score: Optional[float] = field( default=None, metadata={"help": "Minimum clip score required."}, ) max_clip_score: Optional[float] = field( default=None, metadata={"help": "Maximum clip score required."}, ) filter_column: Optional[str] = field( default=None, metadata={"help": "Column that containts classes to be filtered."}, ) filter_value: Optional[str] = field( default=None, metadata={"help": "Class value to be kept during filtering."}, ) multi_eval_ds: Optional[bool] = field( default=False, metadata={ "help": "Whether to look for multiple validation datasets (local support only)." }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of training examples." }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of evaluation examples." }, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={ "help": "The number of processes to use for the preprocessing. Not used in streaming mode." }, ) overwrite_cache: bool = field( default=False, metadata={ "help": "Overwrite the cached training and evaluation sets. Not used in streaming mode." }, ) # default seed of None ensures we don't repeat the same items if script was interrupted during an epoch seed_dataset: int = field( default=None, metadata={ "help": "Random seed for the dataset that will be set at the beginning of training." }, ) def __post_init__(self): if self.dataset_repo_or_path is None: raise ValueError("Need a dataset repository or path.") @dataclass class TrainingArguments: """ Arguments pertaining to training parameters. """ output_dir: str = field( metadata={ "help": "The output directory where the model predictions and checkpoints will be written." }, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field( default=False, metadata={"help": "Whether to run eval on the validation set."} ) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per data parallel device for training."}, ) per_device_eval_batch_size: Optional[int] = field( default=None, metadata={ "help": "Batch size per data parallel device for evaluation. Same as training batch size if not set." }, ) gradient_accumulation_steps: int = field( default=1, metadata={ "help": "Number of updates steps to accumulate before performing an update pass." }, ) gradient_checkpointing: bool = field( default=False, metadata={"help": "Use gradient checkpointing."} ) learning_rate: float = field( default=5e-5, metadata={"help": "The initial learning rate."} ) optim: str = field( default="distributed_shampoo", metadata={ "help": 'The optimizer to use. Can be "distributed_shampoo" (default), "adam" or "adafactor"' }, ) weight_decay: float = field( default=0.0, metadata={"help": "Weight decay applied to parameters."} ) beta1: float = field( default=0.9, metadata={"help": "Beta1 for Adam & Distributed Shampoo."}, ) beta2: float = field( default=0.999, metadata={"help": "Beta2 for for Adam & Distributed Shampoo."}, ) adam_epsilon: float = field( default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."} ) max_grad_norm: float = field( default=1.0, metadata={"help": "Max gradient norm for Adafactor."} ) block_size: int = field( default=1024, metadata={"help": "Chunked size for large layers with Distributed Shampoo."}, ) preconditioning_compute_steps: int = field( default=10, metadata={"help": "Number of steps to update preconditioner."} ) skip_preconditioning_dim_size_gt: int = field( default=4096, metadata={"help": "Max size for preconditioning with Distributed Shampoo."}, ) graft_type: str = field( default="rmsprop_normalized", metadata={ "help": "The type of grafting to use. Can be 'rmsprop_normalized' (default), 'rmsprop', 'adagrad', 'adagrad_normalized', 'sgd' or 'sqrt_n'" }, ) nesterov: bool = field( default=False, metadata={"help": "Use Nesterov momentum for Distributed Shampoo."}, ) optim_quantized: bool = field( default=False, metadata={ "help": "Whether to quantize optimizer (only supported with Distributed Shampoo)." }, ) shard_shampoo_across: str = field( default="dp", metadata={ "help": "Whether to shard the optimizer across data devices (dp), model devices (mp) or both (2d)." }, ) num_train_epochs: int = field( default=3, metadata={"help": "Total number of training epochs to perform."} ) warmup_steps: int = field( default=0, metadata={"help": "Linear warmup over warmup_steps."} ) lr_decay: str = field( default=None, metadata={ "help": "Decay to be used in the learning rate scheduler. Can be None (default), linear or exponential." }, ) lr_transition_steps: int = field( default=None, metadata={ "help": "Number of transition steps associated with learning rate decay when using exponential decay." }, ) lr_decay_rate: float = field( default=None, metadata={ "help": "Decay rate associated with learning rate when using exponential decay." }, ) lr_staircase: bool = field( default=False, metadata={ "help": "Whether to use staircase or continuous learning rate when using exponential decay." }, ) lr_offset: int = field( default=0, metadata={"help": "Number of steps to offset learning rate and keep it at 0."}, ) logging_steps: int = field( default=40, metadata={"help": "Log every X updates steps."} ) eval_steps: int = field( default=400, metadata={"help": "Run an evaluation every X steps."} ) save_steps: int = field( default=4000, metadata={"help": "Save checkpoint every X updates steps."} ) log_model: bool = field( default=False, metadata={"help": "Log model to wandb at `save_steps` frequency."}, ) log_norm_steps: int = field( default=True, metadata={"help": "Log parameters and gradients norm at this frequency."}, ) log_histogram_steps: int = field( default=False, metadata={ "help": "Log parameters and gradients histograms at this frequency. Slows down training." }, ) seed_model: int = field( default=42, metadata={ "help": "Random seed for the model that will be set at the beginning of training." }, ) embeddings_only: bool = field( default=False, metadata={"help": "Train only embedding layers."} ) init_embeddings: bool = field( default=False, metadata={"help": "When training embedding layers, initialize them."}, ) wandb_entity: Optional[str] = field( default=None, metadata={"help": "The wandb entity to use (for teams)."}, ) wandb_project: str = field( default="dalle-mini", metadata={"help": "The name of the wandb project."}, ) wandb_job_type: str = field( default="Seq2Seq", metadata={"help": "The name of the wandb job type."}, ) assert_TPU_available: bool = field( default=False, metadata={"help": "Verify that TPU is not in use."}, ) use_vmap_trick: bool = field( default=True, metadata={"help": "Verify that TPU is not in use."}, ) mp_devices: Optional[int] = field( default=1, metadata={ "help": "Number of devices required for model parallelism. The other dimension of available devices is used for data parallelism." }, ) dp_devices: int = field(init=False) def __post_init__(self): if self.assert_TPU_available: assert ( jax.local_device_count() == 8 ), "TPUs in use, please check running processes" if self.output_dir.startswith("gs://"): assert ( storage is not None ), 'Could not find google.storage. Install with "pip install google-cloud-storage"' assert self.optim in [ "distributed_shampoo", "adam", "adafactor", ], f"Selected optimizer not supported: {self.optim}" if self.optim == "adafactor" and self.weight_decay == 0: self.weight_decay = None assert self.graft_type in [ "rmsprop_normalized", "rmsprop", "adagrad", "adagrad_normalized", "sgd", "sqrt_n", ], f"Selected graft type not supported: {self.graft_type}" assert self.lr_decay in [ None, "linear", "exponential", ], f"Selected learning rate decay not supported: {self.lr_decay}" if self.per_device_eval_batch_size is None: self.per_device_eval_batch_size = self.per_device_train_batch_size if self.log_norm_steps is True: self.log_norm_steps = self.logging_steps if not self.do_train: self.num_train_epochs = 1 if ( os.path.exists(self.output_dir) and os.listdir(self.output_dir) and self.do_train and not self.overwrite_output_dir ): raise ValueError( f"Output directory ({self.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome." ) assert self.shard_shampoo_across in [ "dp", "mp", "2d", ], f"Shard shampoo across {self.shard_shampoo_across} not supported." assert ( self.mp_devices > 0 ), f"Number of devices for model parallelism must be > 0" assert ( jax.device_count() % self.mp_devices == 0 ), f"Number of available devices ({jax.device_count()} must be divisible by number of devices used for model parallelism ({self.mp_devices})." self.dp_devices = jax.device_count() // self.mp_devices def split_params(data): """Split params between scanned and non-scanned""" flat = traverse_util.flatten_dict(unfreeze(data)) split = {"standard": {}, "scanned_encoder": {}, "scanned_decoder": {}} for k, v in flat.items(): if "FlaxBartEncoderLayers" in k: split["scanned_encoder"][k] = v elif "FlaxBartDecoderLayers" in k: split["scanned_decoder"][k] = v else: split["standard"][k] = v # remove empty keys split = {k: v for k, v in split.items() if v} for k, v in split.items(): split[k] = freeze(traverse_util.unflatten_dict(v)) return split def unsplit_params(data): flat = {} for k in ["standard", "scanned_encoder", "scanned_decoder"]: if k in data: flat.update(traverse_util.flatten_dict(unfreeze(data[k]))) return freeze(traverse_util.unflatten_dict(flat)) def trainable_params(data, embeddings_only): """Keep only trainable parameters""" if not embeddings_only: return data data = unfreeze(data) trainable = { "lm_head": data["lm_head"], "model": { "decoder": { layer: data["model"]["decoder"][layer] for layer in [ "embed_positions", "embed_tokens", "final_ln", "layernorm_embedding", ] } }, } return freeze(trainable) def init_embeddings(model, params): """Reinitialize trainable embeddings""" # Must match params in trainable_params() above trainable_keypaths = [ "lm_head.kernel", "model.decoder.embed_positions.embedding", "model.decoder.embed_tokens.embedding", "model.decoder.final_ln.bias", "model.decoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.scale", ] # Note: using private _missing_keys init_keys = {tuple(k.split(".")) for k in trainable_keypaths} model._missing_keys = init_keys return model.init_weights(model.key, model.input_shape, params=params) def main(): # See all possible arguments by passing the --help flag to this script. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1]) ) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # check arguments if training_args.mp_devices > jax.local_device_count(): assert ( data_args.seed_dataset is not None ), "Seed dataset must be provided when model is split over multiple hosts" # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Load dataset dataset = Dataset( **asdict(data_args), do_train=training_args.do_train, do_eval=training_args.do_eval, ) logger.info(f"Local TPUs: {jax.local_device_count()}") logger.info(f"Global TPUs: {jax.device_count()}") # Set up wandb run if jax.process_index() == 0: wandb.init( entity=training_args.wandb_entity, project=training_args.wandb_project, job_type=training_args.wandb_job_type, config=parser.parse_args(), ) # Set up our new model config config_args = { k: getattr(model_args, k) for k in ["dropout", "activation_dropout", "attention_dropout"] if getattr(model_args, k) is not None } config_args["gradient_checkpointing"] = training_args.gradient_checkpointing if model_args.config_name: config = DalleBartConfig.from_pretrained(model_args.config_name) else: config = None # Load or create new model if model_args.model_name_or_path: model, params = DalleBart.from_pretrained( model_args.model_name_or_path, config=config, seed=training_args.seed_model, dtype=getattr(jnp, model_args.dtype), _do_init=False, ) if training_args.embeddings_only and training_args.init_embeddings: params = init_embeddings(model, params) else: model = DalleBart( config, seed=training_args.seed_model, dtype=getattr(jnp, model_args.dtype), _do_init=False, ) params = None for k, v in config_args.items(): setattr(model.config, k, v) params_shape = model.params_shape_tree # get model metadata model_metadata = model_args.get_metadata() # get PartitionSpec for model params (required to be a dict) param_spec = set_partitions(params_shape, model.config.use_scan) params_shape = freeze(params_shape) if params is not None: params = freeze(params) # Load tokenizer tokenizer = DalleBartTokenizer.from_pretrained( model_args.tokenizer_name, use_fast=True ) # Preprocessing the datasets. # We need to normalize and tokenize inputs and targets. dataset.preprocess(tokenizer=tokenizer, config=model.config) # Initialize our training dropout_rng = jax.random.PRNGKey(training_args.seed_model) # Store some constant num_epochs = training_args.num_train_epochs # batch size batch_size_per_node_per_grad_step = ( training_args.per_device_train_batch_size * jax.local_device_count() // training_args.mp_devices ) batch_size_per_node = ( batch_size_per_node_per_grad_step * training_args.gradient_accumulation_steps ) batch_size_per_step = batch_size_per_node * jax.process_count() eval_batch_size_per_node = ( training_args.per_device_eval_batch_size * jax.local_device_count() // training_args.mp_devices ) eval_batch_size_per_step = eval_batch_size_per_node * jax.process_count() len_train_dataset, len_eval_dataset = dataset.length steps_per_epoch = ( len_train_dataset // batch_size_per_node if len_train_dataset is not None else None ) num_train_steps = ( steps_per_epoch * num_epochs if steps_per_epoch is not None else None ) num_params = model.num_params(params_shape) logger.info("***** Running training *****") logger.info(f" Num examples = {len_train_dataset}") logger.info(f" Num Epochs = {num_epochs}") logger.info( f" Batch size per dp device = {training_args.per_device_train_batch_size}" ) logger.info(f" Number of devices = {jax.device_count()}") logger.info( f" Gradient accumulation steps = {training_args.gradient_accumulation_steps}" ) logger.info(f" Batch size per update = {batch_size_per_step}") logger.info(f" Model parameters = {num_params:,}") # set up wandb run if jax.process_index() == 0: # set default x-axis as 'train/step' wandb.define_metric("*", step_metric="train/step") # add interesting config parameters wandb.config.update( { "len_train_dataset": len_train_dataset, "len_eval_dataset": len_eval_dataset, "batch_size_per_step": batch_size_per_step, "num_params": num_params, "model_config": model.config.to_dict(), "num_devices": jax.device_count(), "versions": { "jax": jax.__version__, "jaxlib": jaxlib.__version__, "flax": flax.__version__, "transformers": transformers.__version__, "datasets": datasets.__version__, "wandb": wandb.__version__, "dalle_mini": dalle_mini.__version__, }, } ) # Create learning rate schedule def create_learning_rate_fn() -> Callable[[int], jnp.array]: """Create the learning rate function.""" warmup_fn = optax.linear_schedule( init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps + 1, # ensure not 0 ) last_boundary = training_args.warmup_steps # offset step when resuming if training_args.lr_offset: warmup_fn = optax.join_schedules( schedules=[optax.constant_schedule(0.0), warmup_fn], boundaries=[training_args.lr_offset], ) last_boundary += training_args.lr_offset if training_args.lr_decay is None: return warmup_fn elif training_args.lr_decay == "linear": assert ( num_train_steps is not None ), "linear decay requires knowing the dataset length" decay_fn = optax.linear_schedule( init_value=training_args.learning_rate, end_value=0, transition_steps=num_train_steps - training_args.warmup_steps, ) elif training_args.lr_decay == "exponential": decay_fn = optax.exponential_decay( init_value=training_args.learning_rate, transition_steps=training_args.lr_transition_steps, decay_rate=training_args.lr_decay_rate, staircase=training_args.lr_staircase, ) schedule_fn = optax.join_schedules( schedules=[warmup_fn, decay_fn], boundaries=[last_boundary], ) return schedule_fn learning_rate_fn = create_learning_rate_fn() # create optimizer trainable_params_shape = trainable_params( params_shape, training_args.embeddings_only ) if training_args.optim == "distributed_shampoo": # parameters from https://github.com/tensorflow/lingvo/blob/03ee9d7cd50764b0424c7c863733c91fc0b053ec/lingvo/jax/optimizers.py#L729 graft_type = { "sgd": GraftingType.SGD, "adagrad": GraftingType.ADAGRAD, "rmsprop": GraftingType.RMSPROP, "rmsprop_normalized": GraftingType.RMSPROP_NORMALIZED, "sqrt_n": GraftingType.SQRT_N, "adagrad_normalized": GraftingType.ADAGRAD_NORMALIZED, }[training_args.graft_type] statistics_partition_spec = ( PartitionSpec(None, training_args.shard_shampoo_across, None) if training_args.shard_shampoo_across != "2d" else PartitionSpec(None, "dp", "mp") ) opt = distributed_shampoo( learning_rate_fn, block_size=training_args.block_size, beta1=training_args.beta1, beta2=training_args.beta2, diagonal_epsilon=1e-10, matrix_epsilon=1e-6, weight_decay=training_args.weight_decay, start_preconditioning_step=max( training_args.preconditioning_compute_steps + 1, 101 ), preconditioning_compute_steps=training_args.preconditioning_compute_steps, statistics_compute_steps=1, best_effort_shape_interpretation=True, graft_type=graft_type, nesterov=training_args.nesterov, exponent_override=0, statistics_partition_spec=statistics_partition_spec, preconditioner_partition_spec=PartitionSpec( training_args.shard_shampoo_across, None, None ) if training_args.shard_shampoo_across != "2d" else PartitionSpec( "mp" if training_args.mp_devices > training_args.dp_devices else "dp", None, None, ), num_devices_for_pjit=training_args.dp_devices, shard_optimizer_states=True, inverse_failure_threshold=0.1, moving_average_for_momentum=True, skip_preconditioning_dim_size_gt=training_args.skip_preconditioning_dim_size_gt, clip_by_scaled_gradient_norm=None, precision=jax.lax.Precision.HIGHEST, best_effort_memory_usage_reduction=training_args.optim_quantized, ) # get the real optimizer and helper functions update_fn = opt.update optimizer = {} opt_fn = {} for k, p in split_params(trainable_params_shape).items(): if "scanned" in k: p = jax.eval_shape( lambda x: jax.tree_util.tree_map(lambda y: y[0], x), p ) optimizer[k] = opt.init(p) opt_fn[k] = NamedTuple("opt_fn", pspec_fn=Any, shape_and_dtype_fn=Any)( optimizer[k].pspec_fn, optimizer[k].shape_and_dtype_fn ) optimizer[k] = optax.GradientTransformation(optimizer[k].init_fn, update_fn) elif training_args.optim == "adam": optimizer = optax.adamw( learning_rate=learning_rate_fn, b1=training_args.beta1, b2=training_args.beta2, eps=training_args.adam_epsilon, weight_decay=training_args.weight_decay, ) optimizer = {k: optimizer for k in split_params(trainable_params_shape)} elif training_args.optim == "adafactor": # We use the default parameters here to initialize adafactor, # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74 optimizer = optax.adafactor( learning_rate=learning_rate_fn, clipping_threshold=training_args.max_grad_norm, weight_decay_rate=training_args.weight_decay, ) optimizer = {k: optimizer for k in split_params(trainable_params_shape)} # get PartitionSpec for optimizer state def get_opt_state_spec_and_shape(): # get opt_state shape without actual init opt_state_shape = {} for k, p in split_params(trainable_params_shape).items(): if "scanned" not in k: opt_state_shape[k] = jax.eval_shape(optimizer[k].init, p) else: opt_state_shape[k] = jax.eval_shape(jax.vmap(optimizer[k].init), p) if training_args.optim == "adafactor": # factorized state must be replicated (rank different than params) opt_state_spec = {k: None for k in split_params(trainable_params_shape)} elif training_args.optim in ["adam", "distributed_shampoo"]: def _opt_state_spec_per_leaf(x, spec): if isinstance(x, FrozenDict): # variables with same structure as params return spec else: # other variables such as count return None split_spec = split_params(set_partitions(trainable_params_shape, False)) opt_state_spec = {} for k, p in split_params(trainable_params_shape).items(): if "scanned" in k: p = jax.eval_shape( lambda x: jax.tree_util.tree_map(lambda y: y[0], x), p ) if training_args.optim == "adam": opt_state_spec[k] = jax.tree_util.tree_map( partial(_opt_state_spec_per_leaf, spec=split_spec[k]), opt_state_shape[k], # return None spec for empty elements is_leaf=lambda x: isinstance(x, (FrozenDict, optax.EmptyState)), ) elif training_args.optim == "distributed_shampoo": opt_state_spec[k] = opt_fn[k].pspec_fn( p, split_spec[k], statistics_partition_spec, ) # add dimension for scanned params if "scanned" in k: opt_state_spec[k] = jax.tree_util.tree_map( lambda x: PartitionSpec(*(None,) + x) if x is not None else None, opt_state_spec[k], is_leaf=lambda x: isinstance(x, PartitionSpec), ) else: raise NotImplementedError return freeze(opt_state_spec), freeze(opt_state_shape) opt_state_spec, opt_state_shape = get_opt_state_spec_and_shape() # create a mesh mesh_shape = (training_args.dp_devices, training_args.mp_devices) devices = np.asarray(jax.devices()).reshape(*mesh_shape) mesh = maps.Mesh(devices, ("dp", "mp")) logger.info(f" Mesh shape: {mesh_shape}") # define TrainState class TrainState(struct.PyTreeNode): step: int params: core.FrozenDict[str, Any] opt_state: optax.OptState apply_fn: Callable = struct.field(pytree_node=False) tx: optax.GradientTransformation = struct.field(pytree_node=False) dropout_rng: jnp.ndarray = None epoch: int = 0 train_time: float = 0.0 # total time the model trained train_samples: int = 0 # number of samples seen def apply_gradients(self, *, grads, **kwargs): grads = split_params(trainable_params(grads, training_args.embeddings_only)) params = split_params( trainable_params(self.params, training_args.embeddings_only) ) opt_state = {} # we loop over keys: "standard", "scanned_encoder", "scanned_decoder" for k, param in params.items(): update_fn = self.tx[k].update if "scanned" in k: update_fn = jax.vmap(update_fn, in_axes=(0, 0, 0), out_axes=(0, 0)) updates, new_opt_state = update_fn(grads[k], self.opt_state[k], param) params[k] = optax.apply_updates(param, updates) opt_state[k] = new_opt_state params = unsplit_params(params) # merge with non-trainable params params, new_params = traverse_util.flatten_dict( unfreeze(self.params) ), traverse_util.flatten_dict(unfreeze(params)) params.update(new_params) params = freeze(traverse_util.unflatten_dict(params)) return self.replace( step=self.step + 1, params=params, opt_state=freeze(opt_state), **kwargs, ) @classmethod def create(cls, *, apply_fn, params, tx, **kwargs): opt_state = {} for k, p in split_params( trainable_params(params, training_args.embeddings_only) ).items(): init_fn = tx[k].init if "scanned" in k: init_fn = jax.vmap(init_fn) opt_state[k] = init_fn(p) return cls( step=0, apply_fn=apply_fn, params=params, tx=tx, opt_state=freeze(opt_state), **kwargs, ) # define state spec state_spec = TrainState( params=param_spec, opt_state=opt_state_spec, dropout_rng=None, step=None, epoch=None, train_time=None, train_samples=None, apply_fn=model.__call__, tx=optimizer, ) # init params if not available yet def maybe_init_params(params): if params is not None: # model params are correctly loaded return params else: # params have not been initialized yet return model.init_weights(model.key, model.input_shape) with mesh: logger.info(" Creating state") # restore metadata attr_state = {} keys = ["train_time", "train_samples"] if model_args.restore_state: keys += ["step", "epoch"] attr_state = {k: v for k, v in model_metadata.items() if k in keys} if not model_args.restore_state: def init_state(params): return TrainState.create( apply_fn=model.__call__, tx=optimizer, params=maybe_init_params(params), dropout_rng=dropout_rng, **attr_state, ) state = pjit( init_state, in_axis_resources=(param_spec,) if model_args.model_name_or_path else None, out_axis_resources=state_spec, donate_argnums=(0,), )(params) else: # load opt_state opt_state = from_bytes(opt_state_shape, model_args.get_opt_state()) def restore_state(params, opt_state): return TrainState( apply_fn=model.__call__, tx=optimizer, params=params, opt_state=opt_state, dropout_rng=dropout_rng, **attr_state, ) state = pjit( restore_state, in_axis_resources=( param_spec, opt_state_spec, ), out_axis_resources=state_spec, donate_argnums=(0, 1), )(params, opt_state) # remove opt_state from CPU del opt_state # free CPU memory del params, opt_state_spec, opt_state_shape # define batch specs batch_spec = PartitionSpec("dp") grad_batch_spec = PartitionSpec(None, "dp") # define loss def loss_fn(logits, labels): loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) loss = loss.mean() return loss # "vmap trick" avoids a crash when mp_devices > 1 (not sure why it happens) # lead to better perf: see https://wandb.ai/dalle-mini/dalle-mini/reports/JAX-pmap-vs-pjit--VmlldzoxNDg1ODA2 use_vmap_trick = training_args.use_vmap_trick # make grad_param_spec for vmap if use_vmap_trick: grad_param_spec = jax.tree_util.tree_map( lambda x: PartitionSpec(*("dp",) + (x if x is not None else (None,))), param_spec, ) # Define gradient update step fn def train_step(state, batch, train_time): # get a minibatch (one gradient accumulation slice) def get_minibatch(batch, grad_idx): return jax.tree_util.tree_map( lambda x: jax.lax.dynamic_index_in_dim(x, grad_idx, keepdims=False), batch, ) def compute_loss(params, minibatch, dropout_rng): # minibatch has dim (batch_size, ...) minibatch, labels = minibatch.pop("labels") logits = state.apply_fn( **minibatch, params=params, dropout_rng=dropout_rng, train=True )[0] return loss_fn(logits, labels) grad_fn = jax.value_and_grad(compute_loss) def loss_and_grad(grad_idx, dropout_rng): # minibatch at grad_idx for gradient accumulation (None otherwise) minibatch = ( get_minibatch(batch, grad_idx) if grad_idx is not None else batch ) # ensure it is sharded properly minibatch = with_sharding_constraint(minibatch, batch_spec) # only 1 single rng per grad step, let us handle larger batch size (not sure why) dropout_rng, _ = jax.random.split(dropout_rng) if use_vmap_trick: # "vmap trick", calculate loss and grads independently per dp_device loss, grads = jax.vmap( grad_fn, in_axes=(None, 0, None), out_axes=(0, 0) )(state.params, minibatch, dropout_rng) # ensure they are sharded correctly loss = with_sharding_constraint(loss, batch_spec) grads = with_sharding_constraint(grads, grad_param_spec) # average across all devices # Note: we could average per device only after gradient accumulation, right before params update loss, grads = jax.tree_util.tree_map( lambda x: jnp.mean(x, axis=0), (loss, grads) ) else: # "vmap trick" does not work in multi-hosts and requires too much hbm loss, grads = grad_fn(state.params, minibatch, dropout_rng) # ensure grads are sharded grads = with_sharding_constraint(grads, param_spec) # return loss and grads return loss, grads, dropout_rng if training_args.gradient_accumulation_steps == 1: loss, grads, dropout_rng = loss_and_grad(None, state.dropout_rng) else: # create initial state for cumul_minibatch_step loop init_minibatch_step = ( 0.0, with_sharding_constraint( jax.tree_util.tree_map(jnp.zeros_like, state.params), param_spec ), state.dropout_rng, ) # accumulate gradients def cumul_minibatch_step(grad_idx, cumul_loss_grad_dropout): cumul_loss, cumul_grads, dropout_rng = cumul_loss_grad_dropout loss, grads, dropout_rng = loss_and_grad(grad_idx, dropout_rng) cumul_loss, cumul_grads = jax.tree_util.tree_map( jnp.add, (cumul_loss, cumul_grads), (loss, grads) ) cumul_grads = with_sharding_constraint(cumul_grads, param_spec) return cumul_loss, cumul_grads, dropout_rng # loop over gradients loss, grads, dropout_rng = jax.lax.fori_loop( 0, training_args.gradient_accumulation_steps, cumul_minibatch_step, init_minibatch_step, ) grads = with_sharding_constraint(grads, param_spec) # sum -> mean loss, grads = jax.tree_util.tree_map( lambda x: x / training_args.gradient_accumulation_steps, (loss, grads) ) grads = with_sharding_constraint(grads, param_spec) # update state state = state.apply_gradients( grads=grads, dropout_rng=dropout_rng, train_time=train_time, train_samples=state.train_samples + batch_size_per_step, ) metrics = { "loss": loss, "learning_rate": learning_rate_fn(state.step), } def maybe_fn(fn, val, zeros, freq): """Call fn only if it is a logging step""" return jax.lax.cond( state.step % freq == 0, fn, lambda _: zeros, val, ) # log additional metrics params = trainable_params(state.params, training_args.embeddings_only) grads = trainable_params(grads, training_args.embeddings_only) if training_args.log_norm_steps: zeros_norm = jax.tree_util.tree_map(lambda _: jnp.float32(0), params) def norm(val): return jax.tree_util.tree_map(lambda x: jnp.linalg.norm(x), val) gradients_norm = maybe_fn( norm, grads, zeros_norm, training_args.log_norm_steps ) params_norm = maybe_fn( norm, params, zeros_norm, training_args.log_norm_steps ) metrics.update( { "gradients_norm": gradients_norm, "params_norm": params_norm, } ) if training_args.log_histogram_steps: zeros_hist = jax.tree_util.tree_map( lambda _: jnp.histogram(jnp.zeros(1), density=True), params ) def histogram(val): return jax.tree_util.tree_map( lambda x: jnp.histogram(x, density=True), val ) gradients_hist = maybe_fn( histogram, grads, zeros_hist, training_args.log_histogram_steps ) params_hist = maybe_fn( histogram, params, zeros_hist, training_args.log_histogram_steps ) metrics.update( { "params_hist": params_hist, "gradients_hist": gradients_hist, } ) return state, metrics # Define eval fn eval_model = ( model if model_args.dtype == "float32" else DalleBart( model.config, seed=training_args.seed_model, dtype=jnp.float32, _do_init=False, ) ) def eval_step(state, batch): def compute_eval_loss(batch): batch, labels = batch.pop("labels") logits = eval_model(**batch, params=state.params, train=False)[0] return loss_fn(logits, labels) if use_vmap_trick: loss = jax.vmap(compute_eval_loss)(batch) # ensure they are sharded correctly loss = with_sharding_constraint(loss, batch_spec) # average across all devices loss = jnp.mean(loss) else: loss = compute_eval_loss(batch) return loss # Create parallel version of the train and eval step p_train_step = pjit( train_step, in_axis_resources=( state_spec, grad_batch_spec if training_args.gradient_accumulation_steps > 1 else batch_spec, None, ), out_axis_resources=(state_spec, None), donate_argnums=(0,), ) p_eval_step = pjit( eval_step, in_axis_resources=(state_spec, batch_spec), out_axis_resources=None, ) # define metrics logger class MetricsLogger: def __init__(self, step): # keep state self.state_dict = {} # estimate speed self.step = step self.time = time.perf_counter() self.offset_time = 0.0 def update_state_metrics(self, state): """Update internal state metrics (logged at each call to be used as x-axis)""" self.state_dict = { f'train/{k.split("_")[-1]}': state[k] for k in ["step", "epoch", "train_time", "train_samples"] } # timing metrics new_step = int(state["step"]) new_time = time.perf_counter() if new_step > self.step: # remove time for eval & save delta_time = new_time - self.time - self.offset_time self.offset_time = 0 time_per_step = delta_time / (new_step - self.step) self.step = new_step self.time = new_time self.log_time("train_per_step", time_per_step, offset=False) self.log_time("train_per_log", delta_time, offset=False) def log_time(self, key, duration, offset=True): if jax.process_index() == 0: wandb.log({f"time/{key}": duration, **self.state_dict}) if offset: self.offset_time += duration def log(self, metrics, prefix=None): if jax.process_index() == 0: log_metrics = {} for k, v in metrics.items(): if "_norm" in k: if self.step % training_args.log_norm_steps == 0: log_metrics[f"{k}/"] = unfreeze(v) elif "_hist" in k: if self.step % training_args.log_histogram_steps == 0: v = jax.tree_util.tree_map( lambda x: jax.device_get(x), unfreeze(v) ) v = jax.tree_util.tree_map( lambda x: wandb.Histogram(np_histogram=x), v, is_leaf=lambda x: isinstance(x, tuple), ) log_metrics[f"{k}/"] = v else: if prefix is not None: k = f"{prefix}/{k}" log_metrics[k] = v wandb.log({**log_metrics, **self.state_dict}) # keep local copy of state local_state = { k: jax.device_get(getattr(state, k)).item() for k in ["step", "epoch", "train_time", "train_samples"] } # init variables start_time = time.perf_counter() - local_state["train_time"] train_metrics = None evaluation_ran = False save_model_ran = False metrics_logger = MetricsLogger(local_state["step"]) epochs = tqdm( range(local_state["epoch"], num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0, disable=jax.process_index() > 0, ) def run_evaluation(): # ======================== Evaluating ============================== if training_args.do_eval: start_eval_time = time.perf_counter() # get validation datasets val_datasets = list( dataset.other_eval_datasets.keys() if hasattr(dataset, "other_eval_datasets") else [] ) val_datasets += ["eval"] for val_dataset in val_datasets: eval_loader = dataset.dataloader( val_dataset, eval_batch_size_per_step * max(1, training_args.mp_devices // jax.local_device_count()), ) eval_steps = ( len_eval_dataset // eval_batch_size_per_step if len_eval_dataset is not None else None ) eval_loss = [] for batch in tqdm( eval_loader, desc="Evaluating...", position=2, leave=False, total=eval_steps, disable=jax.process_index() > 0, ): # need to keep only eval_batch_size_per_node items relevant to the node batch = jax.tree_util.tree_map( lambda x: x.reshape( (jax.process_count(), eval_batch_size_per_node) + x.shape[1:] ), batch, ) batch = jax.tree_util.tree_map( lambda x: x[jax.process_index()], batch ) # add dp dimension when using "vmap trick" if use_vmap_trick: bs_shape = ( jax.local_device_count() // training_args.mp_devices, training_args.per_device_eval_batch_size, ) batch = jax.tree_util.tree_map( lambda x: x.reshape(bs_shape + x.shape[1:]), batch ) # freeze batch to pass safely to jax transforms batch = freeze(batch) # accumulate losses async eval_loss.append(p_eval_step(state, batch)) # get the mean of the loss eval_loss = jnp.stack(eval_loss) eval_loss = jnp.mean(eval_loss) eval_metrics = {"loss": eval_loss} # log metrics metrics_logger.log(eval_metrics, prefix=val_dataset) # Print metrics and update progress bar desc = f"Epoch... ({epoch + 1}/{num_epochs} | {val_dataset} Loss: {eval_metrics['loss']})" epochs.write(desc) epochs.desc = desc # log time metrics_logger.log_time("eval", time.perf_counter() - start_eval_time) return eval_metrics def run_save_model(state, eval_metrics=None): if jax.process_index() == 0: start_save_time = time.perf_counter() output_dir = training_args.output_dir use_bucket = output_dir.startswith("gs://") if use_bucket: bucket_path = Path(output_dir[5:]) / wandb.run.id / f"step_{state.step}" bucket, dir_path = str(bucket_path).split("/", 1) tmp_dir = tempfile.TemporaryDirectory() output_dir = tmp_dir.name # save model params = jax.device_get(state.params) model.save_pretrained( output_dir, params=params, ) # save tokenizer tokenizer.save_pretrained(output_dir) # copy to bucket if use_bucket: client = storage.Client() bucket = client.bucket(bucket) for filename in Path(output_dir).glob("*"): blob_name = str(Path(dir_path) / "model" / filename.name) blob = bucket.blob(blob_name) blob.upload_from_filename(str(filename)) tmp_dir.cleanup() # save state opt_state = jax.device_get(state.opt_state) if use_bucket: blob_name = str(Path(dir_path) / "state" / "opt_state.msgpack") blob = bucket.blob(blob_name) blob.upload_from_file(io.BytesIO(to_bytes(opt_state))) else: with (Path(output_dir) / "opt_state.msgpack").open("wb") as f: f.write(to_bytes(opt_state)) # save to W&B if training_args.log_model: # save some space c = wandb.wandb_sdk.wandb_artifacts.get_artifacts_cache() c.cleanup(wandb.util.from_human_size("20GB")) metadata = { k: jax.device_get(getattr(state, k)).item() for k in ["step", "epoch", "train_time", "train_samples"] } metadata["num_params"] = num_params if eval_metrics is not None: metadata["eval"] = eval_metrics # create model artifact if use_bucket: metadata["bucket_path"] = f"gs://{bucket_path}/model" artifact = wandb.Artifact( name=f"model-{wandb.run.id}", type="DalleBart_model", metadata=metadata, ) if use_bucket: artifact.add_reference(metadata["bucket_path"]) else: for filename in [ "config.json", "flax_model.msgpack", "merges.txt", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json", ]: artifact.add_file( f"{Path(training_args.output_dir) / filename}" ) wandb.run.log_artifact(artifact) # create state artifact if use_bucket: metadata["bucket_path"] = f"gs://{bucket_path}/state" artifact_state = wandb.Artifact( name=f"state-{wandb.run.id}", type="DalleBart_state", metadata=metadata, ) if use_bucket: artifact_state.add_reference(metadata["bucket_path"]) else: artifact_state.add_file( f"{Path(training_args.output_dir) / 'opt_state.msgpack'}" ) wandb.run.log_artifact(artifact_state) metrics_logger.log_time("save_model", time.perf_counter() - start_save_time) logger.info(" Ready to start training") with mesh: for epoch in epochs: state = state.replace(epoch=epoch) local_state["epoch"] = epoch # ======================== Training ================================ metrics_logger.update_state_metrics(local_state) metrics_logger.log({}) if training_args.do_train: # load data - may be replicated on multiple nodes node_groups = max( 1, training_args.mp_devices // jax.local_device_count() ) loader_bs = batch_size_per_node * node_groups train_loader = dataset.dataloader( "train", loader_bs, epoch, ) # train for batch in tqdm( train_loader, desc="Training...", position=1, leave=False, total=steps_per_epoch, disable=jax.process_index() > 0, ): # calculate delta time (we have a lag of one step but it's ok) train_time = time.perf_counter() - start_time # reset control variables evaluation_ran = False save_model_ran = False # set correct shape to batch # - add grad_step dim if gradient_accumulation_steps > 1 bs_shape = ( (batch_size_per_node_per_grad_step * node_groups,) if not use_vmap_trick else ( jax.local_device_count() * node_groups // training_args.mp_devices, # local dp devices training_args.per_device_train_batch_size, ) ) if training_args.gradient_accumulation_steps > 1: # reshape data into (gradient_accumulation_steps, batch_per_node, ...) # to avoid any data redistribution when sharding bs_shape = ( training_args.gradient_accumulation_steps, ) + bs_shape # reshape batch batch = jax.tree_util.tree_map( lambda x: x.reshape(bs_shape + x.shape[1:]), batch, ) # freeze batch to pass safely to jax transforms batch = freeze(batch) # train step state, train_metrics = p_train_step(state, batch, train_time) local_state["step"] += 1 local_state["train_time"] = train_time local_state["train_samples"] += batch_size_per_step if ( local_state["step"] % training_args.logging_steps == 0 and jax.process_index() == 0 ): metrics_logger.update_state_metrics(local_state) metrics_logger.log(train_metrics, prefix="train") eval_metrics = None if local_state["step"] % training_args.eval_steps == 0: eval_metrics = run_evaluation() evaluation_ran = True if local_state["step"] % training_args.save_steps == 0: run_save_model(state, eval_metrics) save_model_ran = True # log final train metrics if train_metrics is not None: metrics_logger.update_state_metrics(local_state) metrics_logger.log(train_metrics, prefix="train") epochs.write( f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metrics['loss']}, Learning Rate: {train_metrics['learning_rate']})" ) # Final evaluation at the end of each epoch if not evaluation_ran: eval_metrics = run_evaluation() # save checkpoint after each epoch if not save_model_ran: run_save_model(state, eval_metrics) if __name__ == "__main__": main()