Image Classification
Transformers
Safetensors
swin
ai-gen-images
Inference Endpoints
ideepankarsharma2003 commited on
Commit
1a9bf05
·
verified ·
1 Parent(s): 3b186b3

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +140 -0
README.md ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - ideepankarsharma2003/ImageClassificationStableDiffusion_small
4
+ - ideepankarsharma2003/Midjourney_v6_Classification_small_shuffled
5
+ - ideepankarsharma2003/AIGeneratedImages_Midjourney
6
+ tags:
7
+ - image-classification
8
+ - ai-gen-images
9
+ ---
10
+
11
+
12
+ # Model Card for AI Image Classification - Midjourney V6 & SDXL
13
+
14
+ ## Model Details
15
+
16
+ ### Model Description
17
+
18
+ This model is a **Swin Transformer-based classifier** designed to distinguish between **AI-generated** and **human-created** images, specifically focusing on outputs from **Midjourney V6** and **Stable Diffusion XL (SDXL)**. It has been trained on a curated dataset of AI-generated images.
19
+
20
+ - **Developed by:** Deepankar Sharma
21
+ - **Model type:** Image Classification (Swin Transformer)
22
+ - **Finetuned from model:** SwinForImageClassification
23
+
24
+ ### Model Sources
25
+
26
+ - **Repository:** [Hugging Face Model Repository](https://huggingface.co/ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL)
27
+
28
+ ## Uses
29
+
30
+ ### Direct Use
31
+
32
+ This model can be used for **detecting AI-generated images** from Midjourney V6 and SDXL. It is useful for content moderation, fact-checking, and detecting synthetic media.
33
+
34
+ ### Out-of-Scope Use
35
+
36
+ - The model is **not designed** for detecting AI-generated images from all generative models.
37
+ - It **may not perform well** on heavily edited AI-generated images or images mixed with human elements.
38
+ - It is **not intended for forensic-level deepfake detection**.
39
+
40
+ ## Bias, Risks, and Limitations
41
+
42
+ This model is trained specifically on **Midjourney V6** and **Stable Diffusion XL** datasets. It may not generalize well to images generated by other AI models. Additionally, biases in the dataset could lead to **false positives** (flagging real images as AI-generated) or **false negatives** (failing to detect AI-generated content).
43
+
44
+ ### Recommendations
45
+
46
+ Users should verify results with additional tools and **not solely rely on this model** for high-stakes decisions. Model performance should be tested on domain-specific datasets before deployment.
47
+
48
+ ## How to Get Started with the Model
49
+
50
+ You can use this model with the 🤗 Transformers library:
51
+
52
+ ```python
53
+ from transformers import AutoModelForImageClassification, AutoFeatureExtractor
54
+ from PIL import Image
55
+ import torch
56
+
57
+ # Load model and feature extractor
58
+ model_name = "ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL"
59
+ model = AutoModelForImageClassification.from_pretrained(model_name)
60
+ feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
61
+
62
+ # Load and preprocess image
63
+ image = Image.open("path_to_image.jpg")
64
+ inputs = feature_extractor(images=image, return_tensors="pt")
65
+
66
+ # Perform inference
67
+ with torch.no_grad():
68
+ outputs = model(**inputs)
69
+ logits = outputs.logits
70
+ predicted_label = logits.argmax(-1).item()
71
+
72
+ # Label Mapping
73
+ id2label = {0: "ai_gen", 1: "human"}
74
+ print("Predicted label:", id2label[predicted_label])
75
+ ```
76
+
77
+ ## Training Details
78
+
79
+ ### Training Data
80
+
81
+ The model was trained on the following datasets:
82
+
83
+ - [ImageClassificationStableDiffusion_small](https://huggingface.co/datasets/ideepankarsharma2003/ImageClassificationStableDiffusion_small)
84
+ - [Midjourney_v6_Classification_small_shuffled](https://huggingface.co/datasets/ideepankarsharma2003/Midjourney_v6_Classification_small_shuffled)
85
+ - [AIGeneratedImages_Midjourney](https://huggingface.co/datasets/ideepankarsharma2003/AIGeneratedImages_Midjourney)
86
+
87
+ ### Training Procedure
88
+
89
+ - **Image Size:** 224x224
90
+ - **Patch Size:** 4
91
+ - **Embedding Dimension:** 128
92
+ - **Layers:** 4
93
+ - **Attention Heads per Stage:** [4, 8, 16, 32]
94
+ - **Dropout Rates:**
95
+ - Attention: 0.0
96
+ - Hidden: 0.0
97
+ - Drop Path: 0.1
98
+ - **Activation Function:** GeLU
99
+ - **Optimizer:** AdamW
100
+ - **Learning Rate Scheduler:** Cosine Annealing
101
+ - **Precision:** float32
102
+ - **Training Steps:** 3414
103
+
104
+ ## Evaluation
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ The model was evaluated on a separate validation split from the training datasets.
111
+
112
+ #### Metrics
113
+
114
+ - **Accuracy**
115
+ - **Precision & Recall**
116
+ - **F1 Score**
117
+
118
+ ### Summary
119
+
120
+ The model effectively distinguishes between AI-generated and human-created images, but its performance may be affected by dataset biases and out-of-distribution examples.
121
+
122
+ ## Citation
123
+
124
+ If you use this model, please cite:
125
+
126
+ ```bibtex
127
+ @misc{ai_image_classification,
128
+ author = {Deepankar Sharma},
129
+ title = {AI Image Classification - Midjourney V6 & SDXL},
130
+ year = {2024},
131
+ publisher = {Hugging Face},
132
+ howpublished = {\url{https://huggingface.co/ideepankarsharma2003/AI_ImageClassification_MidjourneyV6_SDXL}}
133
+ }
134
+ ```
135
+
136
+ ## Model Card Authors
137
+
138
+ - **Author:** Deepankar Sharma
139
+
140
+ ---