--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - f1 model-index: - name: output results: [] --- # output This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1131 - F1: 0.9809 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.3479 | 0.0856 | 50 | 0.1687 | 0.9652 | | 0.1711 | 0.1712 | 100 | 0.2640 | 0.9259 | | 0.1464 | 0.2568 | 150 | 0.1211 | 0.9762 | | 0.099 | 0.3425 | 200 | 0.0968 | 0.9803 | | 0.0991 | 0.4281 | 250 | 0.1052 | 0.9768 | | 0.1037 | 0.5137 | 300 | 0.0974 | 0.9759 | | 0.096 | 0.5993 | 350 | 0.0838 | 0.9812 | | 0.0773 | 0.6849 | 400 | 0.1089 | 0.9765 | | 0.0824 | 0.7705 | 450 | 0.1058 | 0.9809 | | 0.1142 | 0.8562 | 500 | 0.0911 | 0.9794 | | 0.0984 | 0.9418 | 550 | 0.0816 | 0.9803 | | 0.0821 | 1.0274 | 600 | 0.0891 | 0.9835 | | 0.0761 | 1.1130 | 650 | 0.0953 | 0.9791 | | 0.0706 | 1.1986 | 700 | 0.1002 | 0.9835 | | 0.0745 | 1.2842 | 750 | 0.0872 | 0.9827 | | 0.0831 | 1.3699 | 800 | 0.1102 | 0.9794 | | 0.0828 | 1.4555 | 850 | 0.0895 | 0.9833 | | 0.0656 | 1.5411 | 900 | 0.0969 | 0.9812 | | 0.0859 | 1.6267 | 950 | 0.0856 | 0.9841 | | 0.0608 | 1.7123 | 1000 | 0.0873 | 0.9797 | | 0.0751 | 1.7979 | 1050 | 0.0818 | 0.9835 | | 0.0561 | 1.8836 | 1100 | 0.0808 | 0.9833 | | 0.0753 | 1.9692 | 1150 | 0.0839 | 0.9838 | | 0.0758 | 2.0548 | 1200 | 0.0955 | 0.9824 | | 0.0413 | 2.1404 | 1250 | 0.1082 | 0.9827 | | 0.0572 | 2.2260 | 1300 | 0.0906 | 0.9821 | | 0.0597 | 2.3116 | 1350 | 0.0847 | 0.9830 | | 0.0506 | 2.3973 | 1400 | 0.0870 | 0.9838 | | 0.0629 | 2.4829 | 1450 | 0.0843 | 0.9815 | | 0.0404 | 2.5685 | 1500 | 0.1024 | 0.9830 | | 0.0476 | 2.6541 | 1550 | 0.0809 | 0.9833 | | 0.0556 | 2.7397 | 1600 | 0.0895 | 0.9830 | | 0.0803 | 2.8253 | 1650 | 0.0840 | 0.9824 | | 0.0856 | 2.9110 | 1700 | 0.0812 | 0.9841 | | 0.0475 | 2.9966 | 1750 | 0.0955 | 0.9827 | | 0.05 | 3.0822 | 1800 | 0.0849 | 0.9824 | | 0.0409 | 3.1678 | 1850 | 0.0958 | 0.9812 | | 0.0368 | 3.2534 | 1900 | 0.1069 | 0.9821 | | 0.0423 | 3.3390 | 1950 | 0.1012 | 0.9809 | | 0.0444 | 3.4247 | 2000 | 0.0959 | 0.9809 | | 0.0456 | 3.5103 | 2050 | 0.0923 | 0.9806 | | 0.0518 | 3.5959 | 2100 | 0.0985 | 0.9821 | | 0.029 | 3.6815 | 2150 | 0.1144 | 0.9818 | | 0.0453 | 3.7671 | 2200 | 0.0975 | 0.9809 | | 0.0452 | 3.8527 | 2250 | 0.1031 | 0.9815 | | 0.0369 | 3.9384 | 2300 | 0.0918 | 0.9827 | | 0.038 | 4.0240 | 2350 | 0.0907 | 0.9830 | | 0.0329 | 4.1096 | 2400 | 0.1058 | 0.9821 | | 0.0249 | 4.1952 | 2450 | 0.1093 | 0.9818 | | 0.0467 | 4.2808 | 2500 | 0.1006 | 0.9803 | | 0.0328 | 4.3664 | 2550 | 0.1100 | 0.9824 | | 0.0314 | 4.4521 | 2600 | 0.1150 | 0.9815 | | 0.0274 | 4.5377 | 2650 | 0.1147 | 0.9821 | | 0.0377 | 4.6233 | 2700 | 0.1173 | 0.9824 | | 0.0378 | 4.7089 | 2750 | 0.1169 | 0.9827 | | 0.0228 | 4.7945 | 2800 | 0.1141 | 0.9818 | | 0.0281 | 4.8801 | 2850 | 0.1138 | 0.9809 | | 0.0362 | 4.9658 | 2900 | 0.1131 | 0.9809 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0