import os custom_imports = dict(imports=['geospatial_fm']) dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None cudnn_benchmark = True dataset_type = 'GeospatialDataset' # TO BE DEFINED BY USER: data directory data_root = '' num_frames = 1 img_size = 224 num_workers = 4 samples_per_gpu = 4 img_norm_cfg = dict( means=[ 0.033349706741586264, 0.05701185520536176, 0.05889748132001316, 0.2323245113436119, 0.1972854853760658, 0.11944914225186566 ], stds=[ 0.02269135568823774, 0.026807560223070237, 0.04004109844362779, 0.07791732423672691, 0.08708738838140137, 0.07241979477437814 ]) bands = [0, 1, 2, 3, 4, 5] tile_size = 224 orig_nsize = 512 crop_size = (tile_size, tile_size) img_suffix = '_merged.tif' seg_map_suffix = '.mask.tif' ignore_index = -1 image_nodata = -9999 image_nodata_replace = 0 image_to_float32 = True # model # TO BE DEFINED BY USER: model path pretrained_weights_path = '' num_layers = 12 patch_size = 16 embed_dim = 768 num_heads = 12 tubelet_size = 1 output_embed_dim = num_frames*embed_dim max_intervals=10000 evaluation_interval=1000 # TO BE DEFINED BY USER: model path experiment = '' project_dir = '' work_dir = os.path.join(project_dir, experiment) save_path = work_dir save_path = work_dir train_pipeline = [ dict(type='LoadGeospatialImageFromFile', to_float32=image_to_float32), dict(type='LoadGeospatialAnnotations', reduce_zero_label=False), dict(type='BandsExtract', bands=bands), dict(type='RandomFlip', prob=0.5), dict(type='ToTensor', keys=['img', 'gt_semantic_seg']), # to channels first dict(type="TorchPermute", keys=["img"], order=(2, 0, 1)), dict(type='TorchNormalize', **img_norm_cfg), dict(type='TorchRandomCrop', crop_size=(tile_size, tile_size)), dict(type='Reshape', keys=['img'], new_shape=(len(bands), num_frames, tile_size, tile_size)), dict(type='Reshape', keys=['gt_semantic_seg'], new_shape=(1, tile_size, tile_size)), dict( type='CastTensor', keys=['gt_semantic_seg'], new_type='torch.LongTensor'), dict(type='Collect', keys=['img', 'gt_semantic_seg']) ] test_pipeline = [ dict(type='LoadGeospatialImageFromFile', to_float32=image_to_float32), dict(type='BandsExtract', bands=bands), dict(type='ToTensor', keys=['img']), # to channels first dict(type="TorchPermute", keys=["img"], order=(2, 0, 1)), dict(type='TorchNormalize', **img_norm_cfg), dict( type='Reshape', keys=['img'], new_shape=(len(bands), num_frames, -1, -1), look_up=dict({ '2': 1, '3': 2 })), dict(type='CastTensor', keys=['img'], new_type='torch.FloatTensor'), dict( type='CollectTestList', keys=['img'], meta_keys=[ 'img_info', 'seg_fields', 'img_prefix', 'seg_prefix', 'filename', 'ori_filename', 'img', 'img_shape', 'ori_shape', 'pad_shape', 'scale_factor', 'img_norm_cfg' ]) ] CLASSES = ('Unburnt land', 'Burn scar') data = dict( samples_per_gpu=samples_per_gpu, workers_per_gpu=num_workers, train=dict( type=dataset_type, CLASSES=CLASSES, data_root=data_root, img_dir='training', ann_dir='training', img_suffix=img_suffix, seg_map_suffix=seg_map_suffix, pipeline=train_pipeline, ignore_index=-1), val=dict( type=dataset_type, CLASSES=CLASSES, data_root=data_root, img_dir='validation', ann_dir='validation', img_suffix=img_suffix, seg_map_suffix=seg_map_suffix, pipeline=test_pipeline, ignore_index=-1), test=dict( type=dataset_type, CLASSES=CLASSES, data_root=data_root, img_dir='validation', ann_dir='validation', img_suffix=img_suffix, seg_map_suffix=seg_map_suffix, pipeline=test_pipeline, ignore_index=-1)) optimizer = dict(type='Adam', lr=1.3e-05, betas=(0.9, 0.999)) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-06, power=1.0, min_lr=0.0, by_epoch=False) log_config = dict( interval=20, hooks=[ dict(type='TextLoggerHook', by_epoch=False), dict(type='TensorboardLoggerHook', by_epoch=False) ]) checkpoint_config = dict( by_epoch=True, interval=10, out_dir=save_path ) evaluation = dict( interval=evaluation_interval, metric='mIoU', pre_eval=True, save_best='mIoU', by_epoch=False) loss_func=dict( type='DiceLoss', use_sigmoid=False, loss_weight=1, ignore_index=-1) runner = dict(type='IterBasedRunner', max_iters=max_intervals) workflow = [('train', 1)] norm_cfg = dict(type='BN', requires_grad=True) model = dict( type='TemporalEncoderDecoder', frozen_backbone=False, backbone=dict( type='TemporalViTEncoder', pretrained=pretrained_weights_path, img_size=img_size, patch_size=patch_size, num_frames=num_frames, tubelet_size=tubelet_size, in_chans=len(bands), embed_dim=embed_dim, depth=12, num_heads=num_heads, mlp_ratio=4.0, norm_pix_loss=False), neck=dict( type='ConvTransformerTokensToEmbeddingNeck', embed_dim=embed_dim*num_frames, output_embed_dim=output_embed_dim, drop_cls_token=True, Hp=14, Wp=14), decode_head=dict( num_classes=len(CLASSES), in_channels=output_embed_dim, type='FCNHead', in_index=-1, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, norm_cfg=dict(type='BN', requires_grad=True), align_corners=False, loss_decode=loss_func), auxiliary_head=dict( num_classes=len(CLASSES), in_channels=output_embed_dim, type='FCNHead', in_index=-1, channels=256, num_convs=2, concat_input=False, dropout_ratio=0.1, norm_cfg=dict(type='BN', requires_grad=True), align_corners=False, loss_decode=loss_func), train_cfg=dict(), test_cfg=dict(mode='slide', stride=(int(tile_size/2), int(tile_size/2)), crop_size=(tile_size, tile_size))) gpu_ids = range(0, 1) auto_resume = False