--- license: apache-2.0 language: - en tags: - Pytorch - mmsegmentation - segmentation - Flood mapping - Sentinel-2 - Geospatial - Foundation model metrics: - accuracy - IoU --- ### Model and Inputs The pretrained [Prithvi-100m](https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M/blob/main/README.md) model is finetuned to segment the extend of floods on Sentinel-2 images from the [Sen1Floods11 dataset](https://github.com/cloudtostreet/Sen1Floods11). The dataset consists of 446 labeled 512x512 chips that span all 14 biomes, 357 ecoregions, and 6 continents of the world across 11 flood events. The benchmark associated to Sen1Floods11 provides results for fully convolutional neural networks trained in various input/labeled data setups, considering Sentinel-1 and Sentinel-2 imagery. We extract the following bands for flood mapping: 1. Blue 2. Green 3. Red 4. Narrow NIR 5. SWIR 1 6. SWIR 2 Labels represent no water (class 0), water/flood (class 1), and no data/clouds (class 2). The Prithvi-100m model was initially pretrained using a sequence length of 3 timesteps. Based on the characteristics of this benchmark dataset, we focus on single-timestamp segmentation. This demonstrates that our model can be utilized with an arbitrary number of timestamps during finetuning. ![](sen1floods11-finetuning.png) ### Code The code for this finetuning is available through [github](https://github.com/NASA-IMPACT/hls-foundation-os/) The configuration used for finetuning is available through this [config](https://github.com/NASA-IMPACT/hls-foundation-os/blob/main/fine-tuning-examples/configs/sen1floods11.py). ### Results Finetuning the geospatial foundation model for 100 epochs leads to the following performance on out-of-sample test data: | **Classes** | **IoU**| **Acc**| |:------------------:|:------:|:------:| | No water | 96.90% | 98.11% | | Water/Flood | 80.46% | 90.54% | |**aAcc**|**mIoU**|**mAcc**| |:------:|:------:|:------:| | 97.25% | 88.68% | 94.37% | The performance of the model has been further validated on an unseen, holdout flood event in Bolivia. The results are consistent with the performance on the test set: | **Classes** | **IoU**| **Acc**| |:------------------:|:------:|:------:| | No water | 95.37% | 97.39% | | Water/Flood | 77.95% | 88.74% | |**aAcc**|**mIoU**|**mAcc**| |:------:|:------:|:------:| | 96.02% | 86.66% | 93.07% | Finetuning took ~1 hour on a NVIDIA V100. ### Inference The github repo includes an inference script that allows to run the flood mapping model for inference on Sentinel-2 images. These input have to be geotiff format, including 6 bands for a single time-step described above (Blue, Green, Red, Narrow NIR, SWIR, SWIR 2) in order. There is also a **demo** that leverages the same code **[here](https://huggingface.co/spaces/ibm-nasa-geospatial/Prithvi-100M-sen1floods11-demo)**.