model_class: NDT1 encoder: from_pt: null stitching: false masker: force_active: true mode: temporal ratio: 0.3 # ratio of data to predict zero_ratio: 1.0 # of the data to predict, ratio of zeroed out random_ratio: 1.0 # of the not zeroed, ratio of randomly replaced expand_prob: 0.0 # probability of expanding the mask in ``temporal`` mode max_timespan: 1 # max span of mask if expanded channels: null # neurons to mask in "co-smoothing" mode timesteps: null # time steps to mask in ``forward-pred`` mode mask_regions: ['all'] # brain regions to mask in ``inter-region`` mode target_regions: ['all'] # brain regions to predict in ``intra-region`` mode n_mask_regions: 1 # num of regions to choose from the list of mask_regions or target_regions # context available for each timestep context: forward: -1 backward: -1 norm_and_noise: active: false smooth_sd: 2 # gaussian smoohing norm: "zscore" # which normalization layer to use (null/layernorm/scalenorm/zscore) eps: 1.e-7 # avoid dividing by zero when normalizing padded spikes white_noise_sd: 1.0 # gaussian noise added to the inputs 1.0 originally constant_offset_sd: 0.2 # gaussian noise added to the inputs but contsnat in the time dimension 0.2 originally embedder: n_channels: 668 # number of neurons recorded n_blocks: 24 # number of blocks of experiments n_dates: 24 # number of days of experiments max_F: 100 # max feature len in timesteps mode: linear # linear/embed/identity mult: 2 # embedding multiplier. hiddden_sizd = n_channels * mult adapt: false # adapt the embedding layer for each day pos: true # embed position act: softsign # activation for the embedding layers scale: 1 # scale the embedding multiplying by this number bias: true # use bias in the embedding layer dropout: 0.2 # dropout in embedding layer fixup_init: false # modify weight initialization init_range: 0.1 # initialization range for embeddings spike_log_init: false # special initialization max_spikes: 0 # max number of spikes in a single time bin tokenize_binary_mask: false use_prompt: false use_session: false stack: active: false # wether to stack consecutive timesteps size: 32 # number of consecutive timesteps to stack stride: 4 # stacking stride transformer: n_layers: 5 # number of transformer layers hidden_size: 512 # hidden space of the transformer use_scalenorm: false # use scalenorm instead of layernorm use_rope: false # use rotary postional encoding rope_theta: 10000.0 # rope angle of rotation n_heads: 8 # number of attentiomn heads attention_bias: true # learn bias in the attention layers act: gelu # activiation function in mlp layers inter_size: 1024 # intermediate dimension in the mlp layers mlp_bias: true # learn bias in the mlp layers dropout: 0.4 # dropout in transformer layers fixup_init: true # modify weight initialization factors: active: false # project from hidden_size to factors size: 8 # factors size act: relu # activation function after projecting to factors bias: true # use bias in projection to factors dropout: 0.0 # dropout in projection to factors fixup_init: false # modify weight initialization init_range: 0.1 # initialization range for factors projetion decoder: from_pt: null