--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: distilhubert-finetuned-ks-ob results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9998775760048969 --- # distilhubert-finetuned-ks-ob This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0033 - Accuracy: 0.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1462 | 1.0 | 191 | 0.1376 | 0.9731 | | 0.0317 | 2.0 | 383 | 0.0206 | 0.9969 | | 0.0112 | 3.0 | 574 | 0.0078 | 0.9990 | | 0.0062 | 4.0 | 766 | 0.0040 | 0.9998 | | 0.0063 | 4.99 | 955 | 0.0033 | 0.9999 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1